Министерство образования и науки Российской Федерации

Муромский институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИ ВлГУ)

Отделение среднего профессионального образования

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПРИ ИЗУЧЕНИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

<u>Архитектура микропроцессорных устройств</u> наименование дисциплины

11.02.01 Радиоаппаратостроение

код и наименование специальности

Программа подготовки специалистов среднего звена

ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ

Фонд оценочных средств (ФОС) для текущего контроля успеваемости и промежуточной аттестации по дисциплине «Архитектура микропроцессорных устройств» разработан в соответствии с рабочей программой, входящей в программу подготовки специалистов среднего звена по специальности 11.02.01 Радиоаппаратостроение.

N_0N_0	Контролируемые разделы (темы) дисциплины	Код	Наименование
п/п		контролируемой	оценочного
		компетенции	средства
		(или ее части)	
1.	Арифметические и логические основы ЭВМ	ОК-4, ОК-5, ПК	Тест
		1.3, ПК 2.2	
2.	Общие принципы функционирования ЭВМ	ОК-4, ОК-5, ПК	Тест, Вопросы к
		1.3, ПК 2.2	лабораторным
			работам
3.	Организация памяти микропроцессорных	ОК-4, ОК-5, ПК	Тест, Вопросы к
	систем	1.3, ПК 2.2	лабораторным
			работам
4.	Архитектура универсальных	ОК-4, ОК-5, ПК	Тест, Вопросы к
	микропроцессоров	1.3, ПК 2.2	лабораторным
			работам
5.	Архитектура однокристальных	ОК-4, ОК-5, ПК	Тест
	микроконтроллеров	1.3, ПК 2.2	

Комплект оценочных средств по дисциплине «Архитектура микропроцессорных устройств» предназначен для аттестации обучающихся на соответствие их персональных достижений поэтапным требованиям образовательной программы, в том числе рабочей программы дисциплины «Архитектура микропроцессорных устройств», для оценивания результатов обучения: знаний, умений, владений и уровня приобретенных компетенций.

Комплект оценочных средств по дисциплине «Архитектура микропроцессорных устройств» включает:

- 1. Оценочные средства для проведения текущего контроля успеваемости:
- комплект заданий репродуктивного уровня для выполнения на лабораторных и практических занятиях, позволяющих оценивать и диагностировать знание фактического материала (базовые понятия, алгоритмы, факты) и умение правильно использовать специальные термины и понятия, распознавание объектов изучения в рамках определенного раздела дисциплины;
- тесты как система стандартизированных знаний, позволяющая провести процедуру измерения уровня знаний и умений обучающихся;
 - перечень тем для устного опроса обучающихся.
 - 2. Оценочные средства для проведения промежуточной аттестации в форме:
 - итогового теста для проведения экзамена.

Перечень компетенций, формируемых в процессе изучения дисциплины «Архитектура микропроцессорных устройств» при освоении программы подготовки специалистов среднего звена по специальности 11.02.01 Радиоаппаратостроение:

ОК-4: Осуществлять пои эффективного выполнения личностного развития	1 1	мации, необходимой для , профессионального и
знать	уметь	иметь практический опыт
Основные методы цифровой обработки сигналов	-	-
ОК-5: Использовать	информационно-коммуникацио	онные технологии в
профессиональной деятельн	· · · · · · · · · · · · · · · · · ·	
знать	уметь	иметь практический опыт
Классификацию и типовые узлы вычислительной техники	-	-
ПК 1.3: Эксплуатировать ас радиоэлектронных изделий.	втоматизированное оборудова	ние для сборки и монтажа
знать	уметь	иметь практический опыт
-	Выбирать и использовать интерфейсы для решения технических задач	-
ПК 2.2: Анализировать элект	прические схемы радиоэлектро	онных изделий.
знать	уметь	иметь практический опыт
Архитектуру микропроцессорных систем	Использовать средства микропроцессорной техники в профессиональной деятельности	-

Показатели, критерии и шкала оценивания компетенций <u>текущего</u> контроля знаний по учебной дисциплине «Архитектура микропроцессорных устройств»

Текущий контроль знаний, согласно Положению о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся (далее Положение) в рамках изучения дисциплины «Архитектура микропроцессорных устройств» предполагает выполнение заданий по лабораторным работам и выполнение заданий по практическим работам.

Регламент проведения и оценивание лабораторных работ

В целях закрепления практических навыков и углубления теоретических знаний по разделам дисциплины «Архитектура микропроцессорных устройств» предполагается выполнение лабораторных работ, что позволяет углубить процесс познания, раскрыть понимание прикладной значимости осваиваемой дисциплины.

Регламент проведения мероприятия

	Total apostonia moporpania			
$N_{\underline{0}}$	Вид работы	Продолжительность		
1.	Предел длительности лабораторной работы	170 мин.		
2.	Защита отчета	10 мин.		
	Итого (в расчете на одну лабораторную работу)	180 мин.		

Критерии оценки лабораторных работ

Оценка	Критерии оценивания	
5 баллов	Лабораторное задание выполнено полностью, в работе обоснованно получено правильное выполненное задание.	
4 балла	Задание выполнено полностью, но нет достаточного обоснования или при верном решении допущена незначительная ошибка, не влияющая на правильную последовательность рассуждений.	
3 балла	Задания выполнены частично.	
2 балла	Задание не выполнено.	

Регламент проведения и оценивание практических работ

В целях закрепления практического материала и углубления теоретических знаний по разделам дисциплины «Архитектура микропроцессорных устройств» предполагается выполнение практических работ, что позволяет углубить процесс познания, раскрыть понимание прикладной значимости осваиваемой дисциплины.

Регламент проведения мероприятия

№	Вид работы	Продолжительность
1.	Предел длительности практической работы	80 мин.
2.	Защита отчета	10 мин.
	Итого (в расчете на одну практическую работу)	90 мин.

Критерии оценки практических работ

Оценка	Критерии оценивания	
5 баллов	Задание выполнено полностью, в представленном отчете	
	обоснованно получено правильное выполненное задание.	
4 балла	Задание выполнено полностью, но нет достаточного	
	обоснования или при верном решении допущена	
	незначительная ошибка, не влияющая на правильную	
	последовательность рассуждений.	
2 балла	Задания выполнены частично.	
0 баллов	Задание не выполнено.	

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ <u>ТЕКУЩЕГО</u> КОНТРОЛЯ ЗНАНИЙ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

«Архитектура микропроцессорных устройств»

Оценочные средства для текущего контроля приведены в Приложении 1. http://scala.mivlgu.ru/upload/files_opop/fde96c2786588d29bfc90c096b755e36_1550508 509.docx

Общее распределение баллов текущего контроля по видам учебных работ для студентов (в соответствии с Положением)

Рейтинг-контроль 1	Устный опрос 20 вопросов.	15
Рейтинг-контроль 2	Устный опрос 20 вопросов.	15
Рейтинг-контроль 3	Устный опрос 20 вопросов.	15
Посещение занятий студентом	Журнал	5
Дополнительные баллы (бонусы)	Активность работы	5
Выполнение семестрового плана самостоятельной работы	2-3 вопроса из перечня тем самостоятельной работы	5

Показатели, критерии и шкала оценивания компетенций <u>промежуточной</u> аттестации знаний по учебной дисциплине «Архитектура микропроцессорных устройств»

На основе типовых заданий программным комплексом информационно-образовательного портала МИ ВлГУ формируются в автоматическом режиме тестовые задания для студентов. Тестовые задания содержат вопросы из всего прочитанного курса. С учетом индивидуального семестрового рейтинга и полученных за экзаменационное тестирование баллов формируется итоговый рейтинг студента.

Максимальное количество баллов, которое студент может получить на экзамене, в соответствии с Положением составляет 40 баллов.

Оценка в баллах	Критерии оценивания компетенций
30-40	Студент глубоко и прочно усвоил программный материал, исчерпывающе,
баллов	последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, причем не затрудняется с ответом при видоизменении заданий, использует в ответе материал монографической литературы, правильно обосновывает принятое решение, владеет разносторонними навыками и приемами выполнения практических задач, подтверждает полное освоение компетенций, предусмотренных программой экзамена.
20-29	Студент твердо знает материал, грамотно и по существу излагает его, не
баллов	допуская существенных неточностей в ответе на вопрос, правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения, допуская некоторые неточности; демонстрирует хороший уровень освоения материала, информационной и коммуникативной культуры и в целом подтверждает освоение компетенций, предусмотренных программой экзамена.
10-19	Студент показывает знания только основного материала, но не усвоил его
баллов	деталей, допускает неточности, недостаточно правильные формулировки, в целом, не препятствует усвоению последующего программного материала, нарушения логической последовательности в изложении программного материала, испытывает затруднения при выполнении практических работ,

	подтверждает освоение компетенций, предусмотренных программой			
	экзамена на минимально допустимом уровне.			
Менее 10	Студент не знает значительной части программного материала (менее 50%			
баллов	правильно выполненных заданий от общего объема работы), допускает			
	существенные ошибки, неуверенно, с большими затруднениями выполняет			
	практические работы, не подтверждает освоение компетенций,			
	предусмотренных программой экзамена.			

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ <u>ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ</u> ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

«Архитектура микропроцессорных устройств»

Оценочные средства для промежуточной аттестации приведены в Приложении 2. http://scala.mivlgu.ru/upload/files_opop/a24ea754e8e8d31e5367c723b247819f_1550508 663.docx

Максимальная сумма баллов, набираемая студентом по дисциплине «Архитектура

микропроцессорных устройств» равна 100.

Оценка в баллах	Оценка по шкале	Обоснование	Уровень сформированности компетенций
Более 80	«Отлично»	Содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному	Высокий уровень
66-80	«Хорошо»	Содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками	Продвинутый уровень
50-65	«Удовлетвор ительно»	Содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки	Пороговый уровень
Менее 50	«Неудовлетв орительно»	Содержание курса не освоено, необходимые практические навыки работы не сформированы, выполненные учебные задания содержат грубые ошибки	Компетенции не сформированы

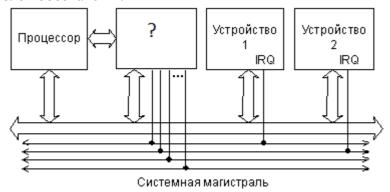
Приложение 1

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ <u>ТЕКУЩЕГО</u> КОНТРОЛЯ ЗНАНИЙ ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

«Архитектура микропроцессорных устройств»

Контрольный тест первой контрольной недели

- 1 Микропроцессорная система (МПС)
 - 1) называется программно-управляемое устройство, осуществляющее процесс цифровой обработки информации и управления им и построенное, как правило, на одной БИС.
 - 2) представляет собой функционально и конструктивно законченное изделие, состоящее из нескольких микросхем, в состав которых входит микропроцессор; оно предназначено для выполнения определенного набора функций: получение, обработка, передача, преобразование информации и управление.
 - 3) представляет собой функционально законченное изделие, состоящее из одного или нескольких устройств, главным образом микропроцессорных: микропроцессора и/или микроконтроллера. +
 - 4) включает технические и программные средства, используемые для построения различных микропроцессорных систем, устройств и персональных микроЭВМ.
- 2 Какому термину соответствует данное утверждение: "Представляют класс специализированных микропроцессоров, ориентированных на цифровую обработку поступающих аналоговых сигналов".
 - 1) Микропроцессоры общего назначения
 - 2) Специализированные микропроцессоры
 - 3) Микроконтроллеры
 - 4) Цифровые процессоры сигналов (ЦПС)
- 3 Какая схема приведена на рисунке

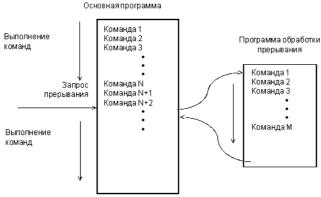

- 1) Схема шины компьютера
- 2) -Схема электронной системы
- 3) -Схема микропроцессора с разнесённой архитектурой
- 4) Схема фон-неймановской вычислительной машины
- 4 Для чего предназначены команды переходов
 - 1) дляпереход вновь на операцию сложения
 - для организации всевозможных циклов, ветвлений, вызовов подпрограмм и т.д.
 - 3) используется тогда, когда необходима реакция микропроцессорной системы на какое-то внешнее событие, на приход внешнего сигнала.
 - 4) для возврата из подпрограммы

- 5 Основные черты мультипрограммного режима: (выберите оидн или несколько вариантов ответов)
 - 1) управляет работой виртуальных прерываний
 - 2) время работы процессора разделяется между программами, находящимися в памяти в состоянии готовности
 - оперативной памяти находятся несколько программ в состояниях активности, ожидания или готовности
 - 4) параллельно с работой процессора происходит подготовка и обмен с несколькими внешними устройствами (ВУ)
- 6 Для чего предназначены команды переходов
 - 1) для выполнения над операндами логические (побитовые) операции
 - 2) для организации всевозможных циклов, ветвлений, вызовов подпрограмм и т.д.
 - 3) рассматривают коды операндов как числовые двоичные или двоично-десятичные коды
 - 4) для установки или очистки битов регистра состояния процессора в зависимости от значения выбранных битов или всего операнда в целом
- 7 Какая из команд используется для обратного возврата в точку вызова подпрограммы (точку перехода)
 - 1) -MOV
 - 2) -CALL
 - 3) -STA
 - 4) -RET
- 8 Какое действие выполняет команда IN
 - 1) Перейти по адресу
 - 2) Извлечь слово из стека
 - 3) Возврат из подпрограммы
 - 4) Ввести данные из порта
- 9 Какие основные типы устройств включает в себя структура микропроцессорной системы (один или несколько вариантов ответов)
 - 1) процессор +
 - 2) контроллер
 - 3) устройства ввода/вывода +
 - 4) память +
- 10 К какому из вариантов организации логического адресного пространства относится данное утверждение: "Состоит из массива байтов, не имеющего определенной структуры; трансляция адреса не требуется, так как логический адрес совпадает с физическим"
 - 1) сегментно-страничное ЛАП
 - 2) страничное ЛАП
 - 3) -плоское (линейное) ЛАП +
 - 4) сегментированное ЛАП
- 11 Принцип регистровой адресации
 - 1) предполагает, что операнд (входной) находится в памяти непосредственно за кодом команды.
 - 2) предполагает, что операнд (входной или выходной) находится в памяти по адресу, код которого находится внутри программы сразу же за кодом команды.

- 3) предполагает, что во внутреннем регистре процессора находится не сам операнд, а его адрес в памяти
- 4) предполагает, что операнд (входной или выходной) находится во внутреннем регистре процессора +
- 12 Какой цикл представлен на рисунке

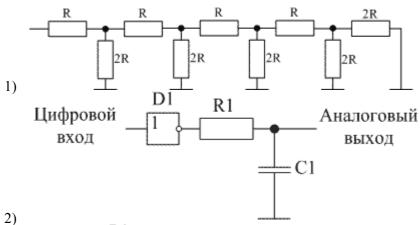
- 2) Цикл «ввод-пауза-вывод» на магистрали Q-bus.
- 3) Цикл записи на магистрали Q-bus.
- 4) Цикл записи в УВВ на магистрали ISA
- 5) Цикл чтения из УВВ на магистрали ISA.
- 13 Какой блок обозначен "?"

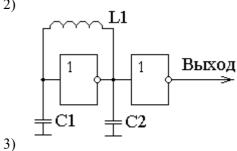
- 2) Контроллер прерывания +
- 3) -Контроллер ПДП
- Буфер
- 5) -Схема управления выборкой команд
- 14 Какой командой осуществляется пересылка содержимого аккумулятора в регистр
 - 1) ADD
 - 2) MOV
 - 3) MVI
 - 4) INX
- 15 Какие функции выполняют команды пересылки данных (выберите один или несколько ответов)
 - 1) загрузка (запись) содержимого во внутренние регистры процессора
 - 2) запись в устройства ввода/вывода и чтение из устройств ввода/вывода
 - 3) операций с фиксированной запятой (сложение, вычитание, умножение, деление);
 - 4) копирование содержимого из одной области памяти в другую
 - (1) Какую функцию выполняет команда DIV
 - 5) вычисляет частное от деления одного кода на другой +
 - 6) вычисляет произведение двух кодов (разрядность результата вдвое больше разрядности сомножителей)

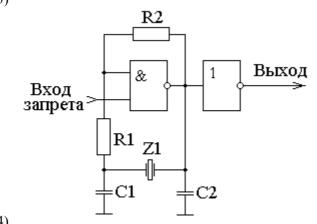

- 7) вычисляет сумму двух кодов
- 8) вычисляет разность двух кодов
- 16 Какая из команд увеличивает содержимое регистра на 1
 - 1) INR
 - 2) JNZ
 - 3) DCR
 - 4) CMP
- 17 При декодировании команды создается одна или несколько упорядоченных троек, каждая из которых включает (выбрать один или несколько вариантов ответа)
 - 1) выделения множества условных команд
 - 2) исполняемую операцию
 - 3) указатель на место помещения результата
 - 4) указатели на операнды
- 18 Запрос прерывания осуществляется
 - 1) сигналом подтверждения RPLY
 - 2) сигналом чтения данных DIN
 - 3) отрицательным сигналом VIRQ
 - 4) сигналом предоставления прерывания ІАКО

Контрольный тест второй контрольной недели

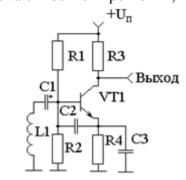
- 19 Какая команда выполняет запрещение прерывания
 - 1) DI
 - 2) ORA
 - 3) PUSH
 - 4) SUB
- 20 Какая из адресаций представлена на данном рисунке

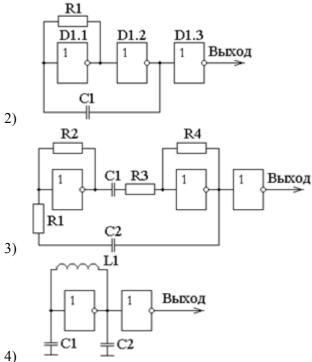

- 1) Непосредственная адресация
- 2) Прямая адресация
- 3) Регистровая адресация
- 4) Косвенная адресация
- 21 Что описывает данная структура

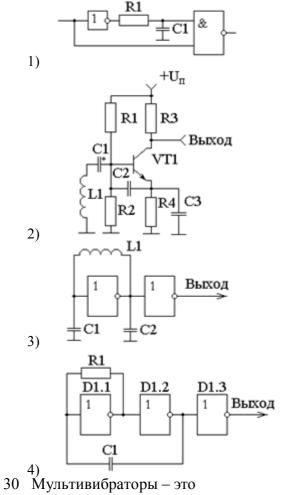



- 2) Обслуживание прерывания
- 3) Программный обмен информацией
- 4) Информационные потоки в режиме ПДП
- 5) Обслуживание ПДП
- 22 Дать определение: память для стека или стек (Stack)
 - 1) это таблица векторов прерываний
 - 2) это память устройств, подключенных к системной шине
 - 3) это часть оперативной памяти, предназначенная для временного хранения данных в режиме LIFO
 - 4) -это устройство ввода/вывода для длительного хранения информации
- 23 Дайте определение состоянию "порождение"
 - 1) подготавливаются условия для первого исполнения на процессоре +
 - 2) программа не исполняется по причине занятости какого-либо ресурса
 - нормальное или аварийное завершение программы, после которого процессор и другие ресурсы ей не предоставляются
 - 4) программа исполняется на процессоре

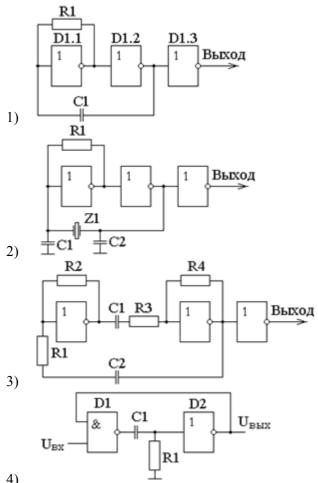
24 Чипсет - это


- 1) системный контроллер, в который входит контроллер системной шины, шин AGP и PCI, ОЗУ и кэш-памяти (для наборов под обычный Pentium);
- периферийный контроллер, включающий контроллеры EIDE, клавиатуры, моста PCI-to-PCI, последовательных/параллельных портов, шины USB и других подобных устройств.
- это набор БИС (обычно 1-3 микросхемы), функционально эквивалентный микросхемам, входящим в стандартную конфигурацию микропроцессорной системы.
- 4) регистр условий: используется для фиксации признаков обмена по каждому из каналов и программных запросов на ПДП
- 25 Регистры, используемые в запоминающих устройствах FLASH память могу быть?
 - 1) -только последовательные
 - 2) -последовательно-параллельные
 - 3) -только параллельные
 - 4) -и последовательные и параллельные
- 26 Укажите принципиальную схему цифро-аналогового преобразователя (ЦАП).

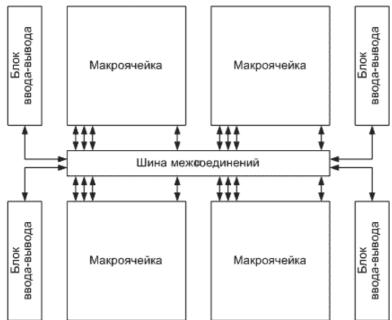




- 4) 27 Укажите особенность матрицы R-2R.
 - 1) Ограничивает мощность, рассеиваемую на кристалле кварца
 - 2) Обеспечивает баланс фаз на заданной частоте
 - 3) Позволяют формировать импульсы определённой длительности
 - 4) В матрице резисторов формируется ряд напряжений, отличающихся друг от друга ровно в два раза
- 28 Схема емкостной трехточки, выполненная на биполярном транзисторе изображена на:

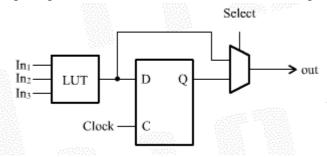


1)



- - 1) генераторы сигналов прямоугольной формы
 - 2) генераторы сигналов синусоидальной формы
 - 3) генераторы сигналов пилообразной формы
 - 4) генераторы сигналов трапециевидной формы
- 31 Принципиальная упрощенная схема мультивибратора?

- 4) 32 Схемы, в которых в качестве запоминающей ячейки используется параллельный регистр называются
 - 1) статическими ОЗУ
 - 2) динамическими ОЗУ
 - 3) КЭШ-памятью
- 33 В микросхемах . . . постоянно требуется регенерировать их содержимое
 - 1) динамического ОЗУ
 - 2) статического ОЗУ
 - 3) статического ПЗУ
 - 4) динамического ПЗУ
- 34 Пример внутреннего устройства какой схемы представлен на рисунке?



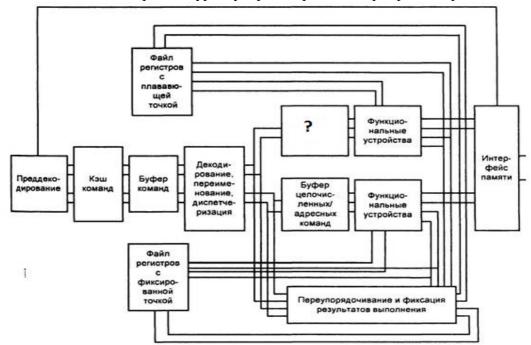
- 1) PLA
- 2) CPLD
- 3) PAL
- 4) FPGL
- 35 Из чего состоит программируемая логическая интегральная схема CPLD?
 - 1) Из матрицы логических элементов "И"
 - 2) Из нескольких макроячеек, расположенных на нескольких кристаллах
 - 3) Из нескольких макроячеек, расположенных на одном кристалле
 - 4) Из блоков LUT
- 36 Чем связаны между собой макроячейки и блоки ввода-вывода в схеме программируемой логической интегральной схеме CPLD?
 - 1) Электронными ключами
 - 2) МОП-ключами
 - 3) Внутренними параллельными шинами
 - 4) Матрицей соединений
- 37 Для чего предназначены МОП-ключи в схеме программируемой логической интегральной схеме CPLD?
 - 1) Передачи на выход текущего значения сигнала с выхода ПЛМ-схемы
 - 2) Настройки выводов микросхемы на ввод или и на вывод сигналов
 - 3) Реализации инверсии логической функции
 - 4) Программирования путей прохождения сигналов по микросхеме

Контрольный тест третьей контрольной недели

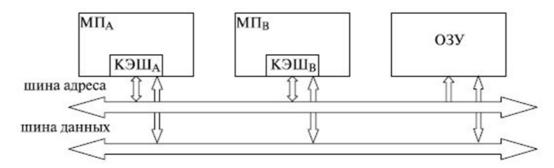
- 38 Назначение двухвходового мультиплексора на выходе макроячейки в схеме программируемой логической интегральной схеме CPLD.
 - 1) Позволяет передавать на выход текущее значение сигнала с выхода ПЛМ-схемы
 - 2) Позволяет передавать на выход сигнал без изменения
 - 3) Позволяет соединять макроячейки и блоки ввода-вывода
 - 4) Позволяет инвертировать сигналы
- 39 Из чего состоит типовая схема программируемой интегральной микросхемы FPGA?
 - 1) Логических блоков, блоков ввода-вывода и программируемых электронных ключей
 - 2) Специальных устройств формирователей импульсов
 - 3) На основе одиночного логического инвертора
 - 4) На микросхемах EEPROM или FLASH-памяти

- 40 С помощью чего осуществляется соединение внутренней цифровой схемы с блоками ввода-вывода в интегральной микросхеме FPGA?
 - 1) Шинных преобразователей
 - 2) Логических инверторов
 - 3) Параллельных линий связи
 - 4) Электронных ключей
- 41 Пример схемы логического блока какой микросхемы представлен на рисунке?

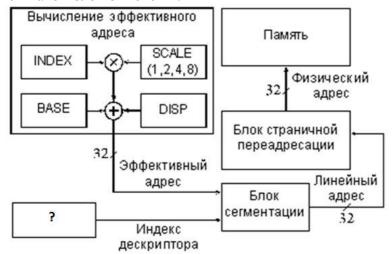
- 1) PLA
- 2) PAL
- 3) FPGA
- 4) CPLD
- 42 Какое действие выполняет команда "HLT"
 - 1) Инверсия содержимого
 - 2) Пересылка содержимого аккумулятора в регистр
 - 3) Обнуление
 - 4) Остановка программы
- 43 Коэффициент мультипрограммирования (КМ) это
 - 1) это коэффициент полезного действия мультипрограммирования
 - 2) это количество программ, обрабатываемых одновременно в мультипрограммном режиме
 - 3) это количество задач выполненных в единицу времени (пропускная способность), и временем выполнения отдельной программы.
 - 4) коэффициент загрузки устройства
- 44 Какой блок универсального микропроцессора обозначен "?"

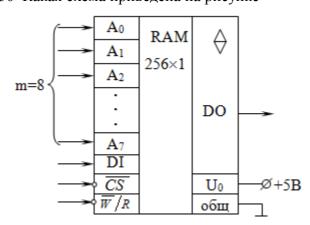


- 1) Регистр общего назначения
- 2) Блок сегментации +
- 3) Схема сравнения


4) -Внутренний МП

45 Шина управления – это


- 1) вторая по важности шина, которая определяет максимально возможную сложность микропроцессорной системы, то есть допустимый объем памяти и, следовательно, максимально возможный размер программы и максимально возможный объем запоминаемых данных
- 2) это основная шина, которая используется для передачи информационных кодов между всеми устройствами микропроцессорной системы
- 3) -это основная шина, ради которой и создается вся система.
- 4) вспомогательная шина, управляющие сигналы на которой определяют тип текущего цикла и фиксируют моменты времени, соответствующие разным частям или стадиям цикла +
- 46 Типы кэш-памяти (один или более ответов)
 - 1) -полностью ассоциативный кэш
 - 2) -одиночно ассоциативный кэш
 - 3) -множественный ассоциативный кэш
 - 4) -кэш прямого отображения
- 47 Какой из блоков архитектуры суперскалярного микропроцессора отмечен "?"


- 1) Буфер команд с плавающей точкой
- 2) -Блок предварительной дешифрации
- 3) -Файл регистров данных
- 4) -Блок прогнозирования ветвлений
- 48 Какая схема представлена на данном рисунке

- 1) Структура мультимикропроцессорной системы с общей оперативной памятью
- 2) Схема реализации ПДП
- 3) Структура интерфейса МП-системы
- 4) Обобщенная структура МПС
- 49 Какой блок отмечен "?"

- 1) -Операнд
- 2) -Дескриптор сегмента
- 3) -Сегментный регистр
- 4) -Сумматор физического адреса
- 50 Какая схема приведена на рисунке

- 1) Микросхема статической ОЗУ со словарной организацией
- 2) Микросхема статической ОЗУ с одноразрядной организацией
- 3) Микросхема статической ОЗУ с одноразрядной организацией +
- 4) Структура микросхемы памяти
- 51 Элементами памяти в ПЗУ являются
 - 1) МДП-транзисторы
 - 2) -электроконденсаторы

- 3) -конденсаторы
- 4) статические триггеры
- 52 Выбрать правильный вариант реализации сохранение результата суммирования в регистре E
 - 1) MVI A,E
 - 2) MVI E,A
 - 3) MOV E,A
 - 4) MOVA,E
- 53 Какое время доступа имеет FLASH память
 - 1) -от 250 до 500 наносекунд
 - 2) от 35 до 200 наносекунд
 - 3) от 315 до 700 наносекунд
 - 4) от 550 до 675 наносекунд
- 54 Какое действие выполняет команда ЕІ
 - 1) Обнуление аккумулятора
 - 2) Инвертировать перенос
 - 3) Бесконечный цикл. Ожидание запроса на прерывание
 - 4) Разрешение прерываний
- 55 Какие задачи возлагаются на интерфейсные схемы модулей (один или несколько ответов)
 - 1) обеспечение функциональной и электрической совместимости сигналов и протоколов обмена модулей и системной магистрали
 - 2) обеспечение восприятия единых команд обмена информацией и преобразование их в последовательность внутренних управляющих сигналов
 - 3) окончание нормальное или аварийное завершение программы, после которого процессор и другие ресурсы ей не предоставляются
 - 4) преобразование внутреннего формата данных модуля в формат данных системной магистрали и обратно

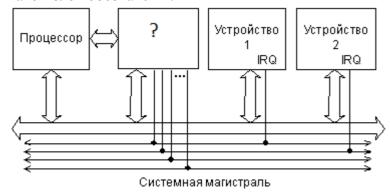
Приложение 2

ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ <u>ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ</u> ПО УЧЕБНОЙ ДИСЦИПЛИНЕ

«Архитектура микропроцессорных устройств»


<u>Знать:</u>

- 1. Микропроцессорная система (МПС)
 - 1) называется программно-управляемое устройство, осуществляющее процесс цифровой обработки информации и управления им и построенное, как правило, на одной БИС.
 - 2) представляет собой функционально и конструктивно законченное изделие, состоящее из нескольких микросхем, в состав которых входит микропроцессор; оно предназначено для выполнения определенного набора функций: получение, обработка, передача, преобразование информации и управление.
 - 3) представляет собой функционально законченное изделие, состоящее из одного или нескольких устройств, главным образом микропроцессорных: микропроцессора и/или микроконтроллера. +
 - 4) включает технические и программные средства, используемые для построения различных микропроцессорных систем, устройств и персональных микроЭВМ.
- 2 Какому термину соответствует данное утверждение: "Представляют класс специализированных микропроцессоров, ориентированных на цифровую обработку поступающих аналоговых сигналов".
 - 1) Микропроцессоры общего назначения
 - 2) Специализированные микропроцессоры
 - 3) Микроконтроллеры
 - 4) Цифровые процессоры сигналов (ЦПС)
- 3 Какая схема приведена на рисунке



- 1) Схема шины компьютера
- 2) -Схема электронной системы
- 3) -Схема микропроцессора с разнесённой архитектурой
- 4) Схема фон-неймановской вычислительной машины
- 4 Для чего предназначены команды переходов
 - 1) для переход вновь на операцию сложения
 - 2) для организации всевозможных циклов, ветвлений, вызовов подпрограмм и т.л.
 - 3) используется тогда, когда необходима реакция микропроцессорной системы на какое-то внешнее событие, на приход внешнего сигнала.
 - 4) для возврата из подпрограммы
- 5 Основные черты мультипрограммного режима: (выберите оидн или несколько вариантов ответов)
 - 1) управляет работой виртуальных прерываний

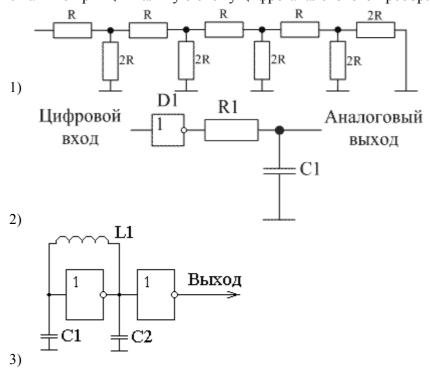
- 2) время работы процессора разделяется между программами, находящимися в памяти в состоянии готовности
- оперативной памяти находятся несколько программ в состояниях активности, ожидания или готовности
- 4) параллельно с работой процессора происходит подготовка и обмен с несколькими внешними устройствами (ВУ)
- 6 Для чего предназначены команды переходов
 - 1) для выполнения над операндами логические (побитовые) операции
 - 2) для организации всевозможных циклов, ветвлений, вызовов подпрограмм и т.д.
 - 3) рассматривают коды операндов как числовые двоичные или двоично-десятичные коды
 - 4) для установки или очистки битов регистра состояния процессора в зависимости от значения выбранных битов или всего операнда в целом
- 7 Какая из команд используется для обратного возврата в точку вызова подпрограммы (точку перехода)
 - 1) -MOV
 - 2) -CALL
 - 3) -STA
 - 4) -RET
- 8 Какое действие выполняет команда IN
 - 1) Перейти по адресу
 - 2) Извлечь слово из стека
 - 3) Возврат из подпрограммы
 - 4) Ввести данные из порта
- 9 Какие основные типы устройств включает в себя структура микропроцессорной системы (один или несколько вариантов ответов)
 - 1) процессор +
 - 2) контроллер
 - 3) устройства ввода/вывода +
 - 4) память +
- 10 К какому из вариантов организации логического адресного пространства относится данное утверждение: "Состоит из массива байтов, не имеющего определенной структуры; трансляция адреса не требуется, так как логический адрес совпадает с физическим"
 - 1) сегментно-страничное ЛАП
 - 2) страничное ЛАП
 - 3) -плоское (линейное) ЛАП +
 - 4) сегментированное ЛАП
- 11 Принцип регистровой адресации
 - 5) предполагает, что операнд (входной) находится в памяти непосредственно за кодом команды.
 - 6) предполагает, что операнд (входной или выходной) находится в памяти по адресу, код которого находится внутри программы сразу же за кодом команды.
 - 7) предполагает, что во внутреннем регистре процессора находится не сам операнд, а его адрес в памяти
 - 8) предполагает, что операнд (входной или выходной) находится во внутреннем регистре процессора +
- 12 Какой цикл представлен на рисунке

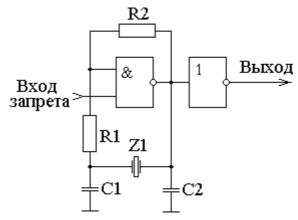
- 1) Цикл «ввод-пауза-вывод» на магистрали Q-bus.
- 2) Цикл записи на магистрали Q-bus.
- 3) Цикл записи в УВВ на магистрали ISA
- 4) Цикл чтения из УВВ на магистрали ISA.
- 13 Какой блок обозначен "?"

- 5) Контроллер прерывания +
- 6) -Контроллер ПДП
- Буфер
- 8) -Схема управления выборкой команд
- 14 Какой командой осуществляется пересылка содержимого аккумулятора в регистр
 - 9) ADD
 - 10) MOV
 - 11) MVI
 - 12) INX
- 15 Какие функции выполняют команды пересылки данных (выберите один или несколько ответов)
 - 1) загрузка (запись) содержимого во внутренние регистры процессора
 - 2) запись в устройства ввода/вывода и чтение из устройств ввода/вывода
 - 3) операций с фиксированной запятой (сложение, вычитание, умножение, деление);
 - 4) копирование содержимого из одной области памяти в другую
- 16 Какую функцию выполняет команда DIV
 - 1) вычисляет частное от деления одного кода на другой +
 - 2) вычисляет произведение двух кодов (разрядность результата вдвое больше разрядности сомножителей)
 - 3) вычисляет сумму двух кодов
 - 4) вычисляет разность двух кодов
- 17 Какая из команд увеличивает содержимое регистра на 1
 - 1) INR
 - 2) JNZ
 - 3) DCR
 - 4) CMP

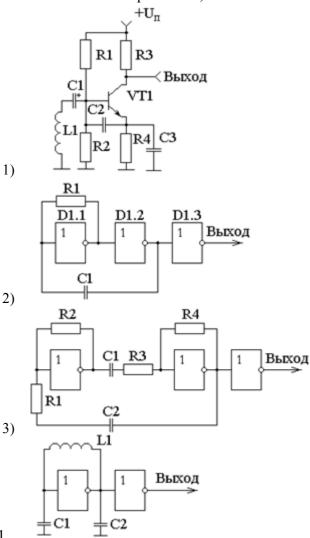
- 18 При декодировании команды создается одна или несколько упорядоченных троек, каждая из которых включает (выбрать один или несколько вариантов ответа)
 - 1) выделения множества условных команд
 - 2) исполняемую операцию
 - 3) указатель на место помещения результата
 - 4) указатели на операнды
- 19 Запрос прерывания осуществляется
 - 1) сигналом подтверждения RPLY
 - 2) сигналом чтения данных DIN
 - 3) отрицательным сигналом VIRQ
 - 4) сигналом предоставления прерывания ІАКО
- 20 Какая команда выполняет запрещение прерывания
 - 1) DI
 - 2) ORA
 - 3) PUSH
 - 4) SUB
- 21 Какая из адресаций представлена на данном рисунке

- 1) Непосредственная адресация
- 2) Прямая адресация
- 3) Регистровая адресация
- 4) Косвенная адресация
- 22 Что описывает данная структура

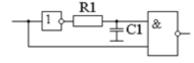


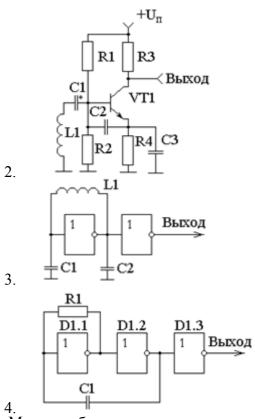

- 1) Обслуживание прерывания
- 2) Программный обмен информацией
- 3) Информационные потоки в режиме ПДП
- 4) Обслуживание ПДП
- 23 Дать определение: память для стека или стек (Stack)
 - 1) это таблица векторов прерываний
 - 2) это память устройств, подключенных к системной шине

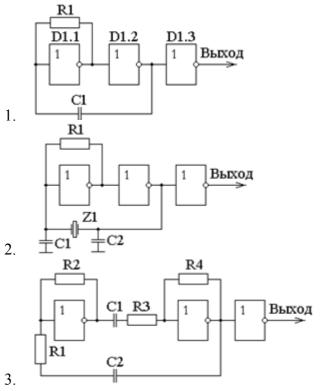
- 3) это часть оперативной памяти, предназначенная для временного хранения данных в режиме LIFO
- 4) -это устройство ввода/вывода для длительного хранения информации
- 24 Дайте определение состоянию "порождение"
 - 5) подготавливаются условия для первого исполнения на процессоре +
 - 6) программа не исполняется по причине занятости какого-либо ресурса
 - 7) нормальное или аварийное завершение программы, после которого процессор и другие ресурсы ей не предоставляются
 - 8) программа исполняется на процессоре
- 25 Чипсет это
 - 1) системный контроллер, в который входит контроллер системной шины, шин AGP и PCI, ОЗУ и кэш-памяти (для наборов под обычный Pentium);
 - 2) периферийный контроллер, включающий контроллеры EIDE, клавиатуры, моста PCI-to-PCI, последовательных/параллельных портов, шины USB и других подобных устройств.
 - 3) это набор БИС (обычно 1-3 микросхемы), функционально эквивалентный микросхемам, входящим в стандартную конфигурацию микропроцессорной системы.
 - 4) регистр условий: используется для фиксации признаков обмена по каждому из каналов и программных запросов на ПДП

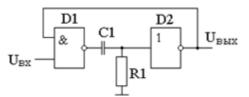

Уметь:

- 1 Регистры, используемые в запоминающих устройствах FLASH память могу быть?
 - 1) -только последовательные
 - 2) -последовательно-параллельные
 - 3) -только параллельные
 - 4) -и последовательные и параллельные
- 2 Укажите принципиальную схему цифро-аналогового преобразователя (ЦАП).



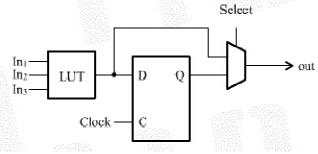

- 4) 3 Укажите особенность матрицы R-2R.
 - 1) Ограничивает мощность, рассеиваемую на кристалле кварца
 - 2) Обеспечивает баланс фаз на заданной частоте
 - 3) Позволяют формировать импульсы определённой длительности
 - 4) В матрице резисторов формируется ряд напряжений, отличающихся друг от друга ровно в два раза
- 4 Схема емкостной трехточки, выполненная на биполярном транзисторе изображена на:


5 Схема ёмкостной трехтонки на основе логического инвертора изображена на:



1.

- 6 Мультивибраторы это
 - 1. генераторы сигналов прямоугольной формы
 - 2. генераторы сигналов синусоидальной формы
 - 3. генераторы сигналов пилообразной формы
 - 4. генераторы сигналов трапециевидной формы
- 7 Принципиальная упрощенная схема мультивибратора?



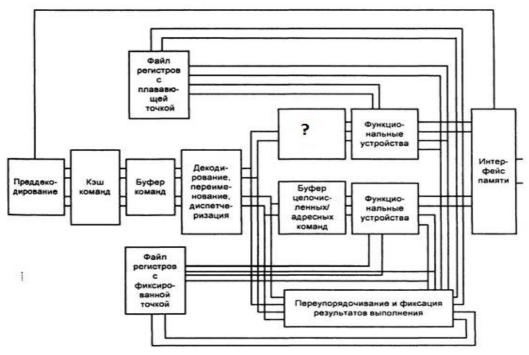
- 4.
- 8 Схемы, в которых в качестве запоминающей ячейки используется параллельный регистр называются
 - 1. статическими ОЗУ
 - 2. динамическими ОЗУ
 - 3. КЭШ-памятью
- 9 В микросхемах . . . постоянно требуется регенерировать их содержимое
 - 1. динамического ОЗУ
 - 2. статического ОЗУ
 - 3. статического ПЗУ
 - 4. динамического ПЗУ



- 1. PLA
- 2. CPLD
- 3. PAL
- 4. FPGL
- 11 Из чего состоит программируемая логическая интегральная схема CPLD?
 - 1. Из матрицы логических элементов "И"
 - 2. Из нескольких макроячеек, расположенных на нескольких кристаллах
 - 3. Из нескольких макроячеек, расположенных на одном кристалле
 - 4. Из блоков LUT
- 12 Чем связаны между собой макроячейки и блоки ввода-вывода в схеме программируемой логической интегральной схеме CPLD?
 - 1. Электронными ключами
 - 2. МОП-ключами
 - 3. Внутренними параллельными шинами
 - 4. Матрицей соединений
- 13 Для чего предназначены МОП-ключи в схеме программируемой логической интегральной схеме CPLD?

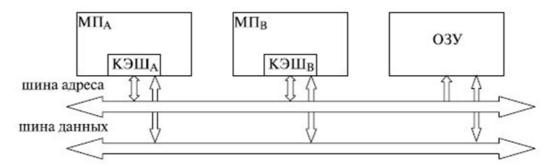
- 1. Передачи на выход текущего значения сигнала с выхода ПЛМ-схемы
- 2. Настройки выводов микросхемы на ввод или и на вывод сигналов
- 3. Реализации инверсии логической функции
- 4. Программирования путей прохождения сигналов по микросхеме
- 14 Назначение двухвходового мультиплексора на выходе макроячейки в схеме программируемой логической интегральной схеме CPLD.
 - 1. Позволяет передавать на выход текущее значение сигнала с выхода ПЛМ-схемы
 - 2. Позволяет передавать на выход сигнал без изменения
 - 3. Позволяет соединять макроячейки и блоки ввода-вывода
 - 4. Позволяет инвертировать сигналы
- 15 Из чего состоит типовая схема программируемой интегральной микросхемы FPGA?
 - 1. Логических блоков, блоков ввода-вывода и программируемых электронных ключей
 - 2. Специальных устройств формирователей импульсов
 - 3. На основе одиночного логического инвертора
 - 4. На микросхемах EEPROM или FLASH-памяти
- 16 С помощью чего осуществляется соединение внутренней цифровой схемы с блоками ввода-вывода в интегральной микросхеме FPGA?
 - 1. Шинных преобразователей
 - 2. Логических инверторов
 - 3. Параллельных линий связи
 - 4. Электронных ключей
- 17 Пример схемы логического блока какой микросхемы представлен на рисунке?

- 1. PLA
- 2. PAL
- 3. FPGA
- 4. CPLD
- 18 Какое действие выполняет команда "HLT"
 - 1) Инверсия содержимого
 - 2) Пересылка содержимого аккумулятора в регистр
 - 3) Обнуление
 - 4) Остановка программы
- 19 Коэффициент мультипрограммирования (КМ) это
 - 1) это коэффициент полезного действия мультипрограммирования
 - 2) это количество программ, обрабатываемых одновременно в мультипрограммном режиме
 - 3) это количество задач выполненных в единицу времени (пропускная способность), и временем выполнения отдельной программы.
 - 4) коэффициент загрузки устройства
- 20 Какой блок универсального микропроцессора обозначен "?"

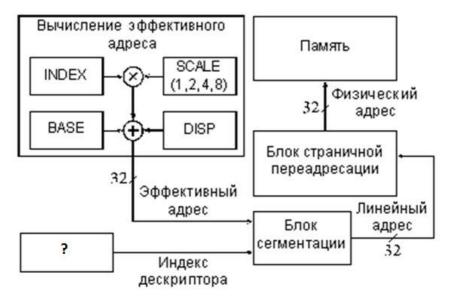

- 1) Регистр общего назначения
- 2) Блок сегментации +
- 3) Схема сравнения
- 4) -Внутренний МП

21 Шина управления – это

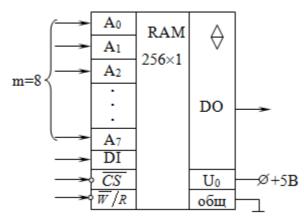
- 1) вторая по важности шина, которая определяет максимально возможную сложность микропроцессорной системы, то есть допустимый объем памяти и, следовательно, максимально возможный размер программы и максимально возможный объем запоминаемых данных
- 2) это основная шина, которая используется для передачи информационных кодов между всеми устройствами микропроцессорной системы
- 3) -это основная шина, ради которой и создается вся система.
- 4) вспомогательная шина, управляющие сигналы на которой определяют тип текущего цикла и фиксируют моменты времени, соответствующие разным частям или стадиям цикла +


22 Типы кэш-памяти (один или более ответов)

- 1) -полностью ассоциативный кэш
- 2) -одиночно ассоциативный кэш
- 3) -множественный ассоциативный кэш
- 4) -кэш прямого отображения
- 23 Какой из блоков архитектуры суперскалярного микропроцессора отмечен "?"



- 1) Буфер команд с плавающей точкой
- 2) -Блок предварительной дешифрации
- 3) -Файл регистров данных
- 4) -Блок прогнозирования ветвлений


24 Какая схема представлена на данном рисунке

- 1) Структура мультимикропроцессорной системы с общей оперативной памятью
- 2) Схема реализации ПДП
- 3) Структура интерфейса МП-системы
- 4) Обобщенная структура МПС
- 25 Какой блок отмечен "?"

- 1) -Операнд
- 2) -Дескриптор сегмента
- 3) -Сегментный регистр
- 4) -Сумматор физического адреса
- 26 Какая схема приведена на рисунке

- 1) Микросхема статической ОЗУ со словарной организацией
- 2) Микросхема статической ОЗУ с одноразрядной организацией
- 3) Микросхема статической ОЗУ с одноразрядной организацией +
- 4) Структура микросхемы памяти
- 27 Элементами памяти в ПЗУ являются
 - 1) МДП-транзисторы
 - 2) -электроконденсаторы
 - 3) -конденсаторы
 - 4) статические триггеры
- 28 Выбрать правильный вариант реализации сохранение результата суммирования в регистре E
 - 1) MVI A,E
 - 2) MVI E,A
 - 3) MOV E,A
 - 4) MOVA,E
- 29 Какое время доступа имеет FLASH память
 - 1) -от 250 до 500 наносекунд
 - 2) от 35 до 200 наносекунд
 - 3) от 315 до 700 наносекунд
 - 4) от 550 до 675 наносекунд

- 30 Какое действие выполняет команда ЕІ
 - 1) Обнуление аккумулятора
 - 2) Инвертировать перенос
 - 3) Бесконечный цикл. Ожидание запроса на прерывание
 - 4) Разрешение прерываний
- 31 Какие задачи возлагаются на интерфейсные схемы модулей (один или несколько ответов)
 - 1) обеспечение функциональной и электрической совместимости сигналов и протоколов обмена модулей и системной магистрали
 - 2) обеспечение восприятия единых команд обмена информацией и преобразование их в последовательность внутренних управляющих сигналов
 - 3) окончание нормальное или аварийное завершение программы, после которого процессор и другие ресурсы ей не предоставляются
 - 4) преобразование внутреннего формата данных модуля в формат данных системной магистрали и обратно