Министерство науки и высшего образования Российской Федерации

Муромский институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИ ВлГУ)

Кафедра ТМС

«УТВЕРЖДАЮ»
Заместитель директора по УР
Д.Е. Андрианов
21.05.2024

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Высокопроизводительная обработка резанием

Направление подготовки 15.04.05 Конструкторско-технологическое

обеспечение машиностроительных

производств

Профиль подготовки Технология машиностроения

Семестр	Трудоем- кость, час./зач. ед.	Лек- ции, час.	Практи- ческие занятия, час.	Лабора- торные работы, час.	Консуль- тация, час.	Конт- роль, час.	Всего (контак- тная работа), час.	СРС, час.	Форма промежу- точного контроля (экз., зач., зач. с оц.)
3	180 / 5	16		32	3,6	0,35	51,95	101,4	Экз.(26,65)
Итого	180 / 5	16		32	3,6	0,35	51,95	101,4	26,65

1. Цель освоения дисциплины

Цель дисциплины: изучение принципов обеспечения высокопроизводительной обработки металлов резанием в условиях автоматизированных машиностроительных производств.

Задачи дисциплины:

- 1. Изучение современных способов осуществления высокопроизводительной обработки поверхностей деталей машин резанием.
- 2. Изучение передового опыта компаний мировых лидеров в области обработки резанием и производства режущего инструмента.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина "Высокопроизводительная обработка резанием" является дисциплиной по формируемой участниками образовательных отношений, "Дисциплины (модули)" основной профессиональной образовательной программы магистратуры по направлению подготовки 15.04.05 "Конструкторско-технологическое обеспечение машиностроительных производств". Базовыми дисциплинами, на которых основано изучение дисциплины "Высокопроизводительная обработка резанием", являются: "Методы обеспечения качества машиностроительной продукции", "Современные проблемы технологии машиностроения", "Системы числового программного управления станками". На "Высокопроизводительная освоения дисциплины обработка результатах основывается изучение дисциплин: "Специализация по теме диссертации", "Лабораторный практикум компьютерному проектированию оснащения машиностроительного производства", а также прохождение технологической и преддипломной практик, выполнение выпускной квалификационной работы (магистерской диссертации).

3. Планируемые результаты обучения по дисциплине

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые	Планируемые результаты	обучения по дисциплине, в	
компетенции (код,	соответствии с индикаторо	Наименование	
содержание	Индикатор достижения	Результаты обучения по	оценочного средства
компетенции)	компетенции	дисциплине	1
ПК-1 Способен	ПК-1.1 Проводит анализ	Знать: классификацию	вопросы для устного
анализировать,	технологичности	конструкционных	опроса, задания для
разрабатывать и	конструкции изделия и	материалов по группам	итогового тестирования
внедрять эффективные	технических требований,	обрабатываемости	
технологические	предъявляемых к изделию	резанием . (ПК-1.1)	
процессы серийного			
производства изделий			
машиностроения	THE O.D. T		
ПК-2 Способен	ПК-2.2 Разрабатывает	Знать: современный	вопросы для устного
проводить анализ и	технические задания на	режущий инструмент для	опроса, контрольные
проектирование	разработку средств	высокопроизводительной	вопросы к лабораторным
технологического	технологического	обработки резанием . (ПК-	работам, задания для
оснащения	оснащения	2.2)	итогового
механообрабатывающего	механообрабатывающего	Уметь: выбирать	тестирования,вопросы
производства	производства	инструмент,	для устного опроса,
		инструментальный	задания для итогового
		материал, геометрию	тестирования
		режущей части для обеспечения	
		высокопроизводительной обработки при точении,	
		фрезеровании, иных	
		способах обработки . (ПК-	
		2.2)	
	ПК-2.3 Осуществляет	Знать: принципы	

отладку и корректировку	назначения оптимального	
управляющих программ		
	режима резания при	
для металлорежущего	наиболее	
оборудования с ЧПУ	распространённых	
	способах обработки	
	заготовок на станках с	
	ЧПУ . (ПК-2.3)	
	Уметь: определять	
	технологические режимы	
	для обеспечения	
	высокопроизводительной	
	обработки при точении,	
	фрезеровании, иных	
	способах обработки . (ПК-	
	2.3)	

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов.

4.1. Форма обучения: очная

Уровень базового образования: высшее. Срок обучения 2г.

4.1.1. Структура дисциплины

№	№ Раздел (тема)		обу		онтан цихся раб		даго		ским	тьная работа	Форма текущего контроля успеваемости (по неделям семестра),
ц/ц 345	дисциплины	Семестр	Лекции	Практические занятия	Лабораторные работы	Контрольные работы	KII / KP	Консультация	Контроль	Самостоятельная работа	форма промежуточной аттестации(по семестрам)
1	Обрабатываемость резанием	3	2							34	устный опрос, итоговое тестирование
2	Точение и растачивание	3	6		8					22	устный опрос, отчёты по лабораторным работам, итоговое тестирование
3	Осевая обработка.	3	4							14	устный опрос, итоговое тестирование
4	Фрезерование.	3	4		24					31,4	устный опрос, отчёты по лабораторным работам, итоговое тестирование
Всего	за семестр	180	16		32			3,6	0,35	101,4	Экз.(26,65)
Итог	0	180	16		32			3,6	0,35	101,4	26,65

4.1.2. Содержание дисциплины 4.1.2.1. Перечень лекций

Семестр 3

Раздел 1. Обрабатываемость резанием

Лекция 1.

Обрабатываемые материалы. Особенности стружкообразования (2 часа).

Раздел 2. Точение и растачивание

Лекция 2.

Кинематические особенности точения и растачивания (2 часа).

Лекция 3.

Пути повышения производительности точения и растачивания (2 часа).

Лекция 4.

Выбор инструмента при точении и растачивании (2 часа).

Раздел 3. Осевая обработка.

Лекция 5.

Кинематические особенности сверления, рассверливания, зенкерования, развёртывания (2 часа).

Лекция 6.

Пути повышения производительности сверления (2 часа).

Раздел 4. Фрезерование.

Лекция 7.

Кинематические особенности фрезерования. Выбор инструмента (2 часа).

Лекция 8.

Пути повышения производительности фрезерования (2 часа).

4.1.2.2. Перечень практических занятий

Не планируется.

4.1.2.3. Перечень лабораторных работ

Семестр 3

Раздел 2. Точение и растачивание

Лабораторная 1.

Параметрическая оптимизация процесса точения (часть 1) (4 часа).

Лабораторная 2.

Параметрическая оптимизация процесса точения (часть 2) (4 часа).

Раздел 4. Фрезерование.

Лабораторная 3.

Параметрическая оптимизация процесса фрезерования (часть 1) (4 часа).

Лабораторная 4.

Параметрическая оптимизация процесса фрезерования (часть 2) (4 часа).

Лабораторная 5.

Параметрическая оптимизация процесса разрезания (часть 1) (4 часа).

Лабораторная 6.

Параметрическая оптимизация процесса разрезания (часть 2) (4 часа).

Лабораторная 7.

Равномерность фрезерования (часть 1) (4 часа).

Лабораторная 8.

Равномерность фрезерования (часть 2) (4 часа).

4.1.2.4. Перечень тем и учебно-методическое обеспечение самостоятельной работы

Перечень тем, вынесенных на самостоятельное изучение:

- 1. Шесть основных групп обрабатываемости конструкционных материалов по классификации ISO.
- 2. Дополнительная классификация обрабатываемых материалов с использованием Coromant Material Classification (CMC).
- 3. Сталь ISO P основные характеристики.
- 4. Нержавеющая сталь ISO M основные характеристики.
- 5. Чугун ISO К основные характеристики.
- 6. Цветные сплавы ISO N основные характеристики.
- 7. Жаропрочные и титановые сплавы ISO S основные характеристики.
- 8. Материалы высокой твёрдости ISO H основные характеристики.
- 9. Характер формирования стружки при обработке различных групп конструкционных материалов.
- 10. Удельная сила резания. Коэффициент, учитывающий свойства обрабатываемого материала.
- 11. Условия обработки резанием для области ISO P.

- 12. Сила резания, действующая на режущую кромку инструмента.
- 13. Температура в зоне резания.
- 14. Конструкция современной многогранной инструментальной пластины Sandvik Coromant.
- 15. Назначение конструктивных элементов и виды геометрий сменных многогранных инструментальных пластин.
- 16. Усиление режущей кромки. Положительный и отрицательный передние углы.
- 17. Требования к инструментальным пластинам для различных операций обработки резанием. Универсальные и специализированные пластины.
- 18. Области применения инструментальных пластин при точении. Специализированные твёрдые сплавы и геометрии пластин для точения.
- 19. Области применения инструментальных пластин при фрезеровании. Выбор пластин для фрезерования.
- 20. Типы современных инструментальных материалов. Основная классификация инструментальных материалов.
- 21. Твёрдые сплавы без покрытия и с покрытием.
- 22. Керметы. Минералокерамика. Кубический нитрид бора. Поликристаллический алмаз.
- 23. Микроструктура твёрдого сплава. Прочность и износостойкость твёрдого сплава, их связь с размером зерна и количеством связки.
- 24. Покрытия для твёрдого сплава. Свойства различных типов покрытий.
- 25. Механизмы износа режущей кромки. Виды износа режущей кромки, причины и решения.
- 26. Основные токарные операции. Теория точения и растачивания.
- 27. Режимы резания при точении и растачивании.
- 28. Передний угол и угол наклона главной режущей кромки токарных резцов.
- 29. Глубина резания. Подача на оборот. Параметры срезаемого слоя при точении и растачивании.
- 30. Влияние формы токарной пластины и главного угла в плане на толщину и ширину стружки.
- 31. Расчёт потребляемой мощности при точении и растачивании.
- 32. Токарные пластины без задних углов и с задними углами. Обзор державок и оправок.
- 33. Системы крепления и современные способы закрепления пластин Sandvik Coromant для токарного инструмента.
- 34. Три основные области применения токарных инструментальных пластин (R, M, F).
- 35. Особенности стружкодробления при точении и растачивании. Диаграмма стружкодробления.
- 36. Теория сверления отверстий. Четыре метода сверления. Максимальная глубина отверстия.
- 37. Скорость резания для свёрл со сменными пластинами, напаянными пластинами и цельных свёрл.
- 38. Сравнение цельных твердосплавных и быстрорежущих свёрл.
- 39. Режимы резания при сверлении. Влияние скорости резания и подачи на результаты сверления.
- 40. Расчёт потребляемой мощности, крутящего момента и осевой силы при сверлении.
- 41. Теория фрезерования. Виды фрез. Скорость резания, подача на зуб, подача на оборот, минутная подача при фрезеровании.
- 42. Глубина резания и ширина фрезерования.
- 43. Попутное и встречное фрезерование.
- 44. Диаметр фрезы, взаимное положение фрезы и заготовки.
- 45. Особенности стружкообразования в зависимости от положения фрезы.
- 46. Три основные области применения фрезерных инструментальных пластин (H, M, L).
- 47. Фрезы с главным углом в плане 45 и 90 градусов, Фрезы с круглыми пластинами твёрдого сплава.
- 48. Кинематический обзор распространённых фрезерных операций.
- 49. Выбор фрезерных пластин и фрезерного инструмента в соответствии с рекомендациями Sandvik Coromant.
- 50. Выбор геометрии пластины и марки твёрдого сплава для фрезерования.

51. Расчёт потребляемой мощности при фрезеровании. Примеры расчётов режимов резания при фрезеровании.

Для самостоятельной работы используются методические указания по освоению дисциплины и издания из списка приведенной ниже основной и дополнительной литературы.

- **4.1.2.5. Перечень тем контрольных работ, рефератов, ТР, РГР, РПР** Не планируется.
- **4.1.2.6. Примерный перечень тем курсовых работ (проектов)** Не планируется.

4.2 Форма обучения: очно-заочная Уровень базового образования: высшее. Срок обучения 2г 6м.

Семестр	Трудоем- кость, час./ зач. ед.	Лек- ции, час.	Практи- ческие занятия, час.	Лабора- торные работы, час.	Консуль- тация, час.	Конт- роль,час.	Всего (контак- тная работа), час.	СРС,	Форма промежуточного контроля (экз., зач., зач. с оц.)
5	180 / 5	16		32	3,6	0,35	51,95	101,4	Экз.(26,65)
Итого	180 / 5	16		32	3,6	0,35	51,95	101,4	26,65

4.2.1. Структура дисциплины

№	Раздел (тема)	Семестр	обу				едаго		ским	Самостоятельная работа	Форма текущего контроля успеваемости (по неделям семестра),
п/п	дисциплины	CeM	Лекции	Практические занятия	Лабораторные работы	Контрольные работы	KII / KP	Консультация	Контроль	Самостоятел	форма промежуточной аттестации(по семестрам)
1	Обрабатываемость резанием	5	2							34	устный опрос, итоговое тестирование
2	Точение и растачивание	5	6		8					22	устный опрос, отчёты по лабораторным работам, итоговое тестирование
3	Осевая обработка.	5	4							14	устный опрос, итоговое тестирование
4	Фрезерование.	5	4		24					31,4	устный опрос, отчёты по лабораторным работам, итоговое тестирование
Bcer	го за семестр	180	16		32			3,6	0,35	101,4	Экз.(26,65)
Ито	го	180	16		32			3,6	0,35	101,4	26,65

4.2.2. Содержание дисциплины 4.2.2.1. Перечень лекций

Семестр 5

Раздел 1. Обрабатываемость резанием

Лекция 1.

Обрабатываемые материалы. Особенности стружкообразования (2 часа).

Раздел 2. Точение и растачивание

Лекция 2.

Кинематические особенности точения и растачивания (2 часа).

Лекция 3.

Пути повышения производительности точения и растачивания (2 часа).

Лекция 4.

Выбор инструмента при точении и растачивании (2 часа).

Раздел 3. Осевая обработка.

Лекция 5.

Кинематические особенности сверления, рассверливания, зенкерования, развёртывания (2 часа).

Лекция 6.

Пути повышения производительности сверления (2 часа).

Раздел 4. Фрезерование.

Лекция 7.

Кинематические особенности фрезерования. Выбор инструмента (2 часа).

Лекция 8.

Пути повышения производительности фрезерования (2 часа).

4.2.2.2. Перечень практических занятий

Не планируется.

4.2.2.3. Перечень лабораторных работ

Семестр 5

Раздел 1. Точение и растачивание

Лабораторная 1.

Параметрическая оптимизация процесса точения (часть 1) (4 часа).

Лабораторная 2.

Параметрическая оптимизация процесса точения (часть 2) (4 часа).

Раздел 2. Фрезерование.

Лабораторная 3.

Параметрическая оптимизация процесса фрезерования (часть 1) (4 часа).

Лабораторная 4.

Параметрическая оптимизация процесса фрезерования (часть 2) (4 часа).

Лабораторная 5.

Параметрическая оптимизация процесса разрезания (часть 1) (4 часа).

Лабораторная 6.

Параметрическая оптимизация процесса разрезания (часть 2) (4 часа).

Лабораторная 7.

Равномерность фрезерования (часть 1) (4 часа).

Лабораторная 8.

Равномерность фрезерования (часть 2) (4 часа).

4.2.2.4. Перечень тем и учебно-методическое обеспечение самостоятельной работы

Перечень тем, вынесенных на самостоятельное изучение:

- 1. Шесть основных групп обрабатываемости конструкционных материалов по классификации ISO.
- 2. Дополнительная классификация обрабатываемых материалов с использованием Coromant Material Classification (CMC).
 - 3. Сталь ISO P основные характеристики.
 - 4. Нержавеющая сталь ISO M основные характеристики.
 - 5. Чугун ISO К основные характеристики.
 - 6. Цветные сплавы ISO N основные характеристики.
 - 7. Жаропрочные и титановые сплавы ISO S основные характеристики.
 - 8. Материалы высокой твёрдости ISO H основные характеристики.
- 9. Характер формирования стружки при обработке различных групп конструкционных материалов.
- 10. Удельная сила резания. Коэффициент, учитывающий свойства обрабатываемого материала.
 - 11. Условия обработки резанием для области ISO Р.
 - 12. Сила резания, действующая на режущую кромку инструмента.
 - 13. Температура в зоне резания.
- 14. Конструкция современной многогранной инструментальной пластины Sandvik Coromant.
- 15. Назначение конструктивных элементов и виды геометрий сменных многогранных инструментальных пластин.
 - 16. Усиление режущей кромки. Положительный и отрицательный передние углы.
- 17. Требования к инструментальным пластинам для различных операций обработки резанием. Универсальные и специализированные пластины.
- 18. Области применения инструментальных пластин при точении. Специализированные твёрдые сплавы и геометрии пластин для точения.
- 19. Области применения инструментальных пластин при фрезеровании. Выбор пластин для фрезерования.
- 20. Типы современных инструментальных материалов. Основная классификация инструментальных материалов.
 - 21. Твёрдые сплавы без покрытия и с покрытием.
- 22. Керметы. Минералокерамика. Кубический нитрид бора. Поликристаллический алмаз.
- 23. Микроструктура твёрдого сплава. Прочность и износостойкость твёрдого сплава, их связь с размером зерна и количеством связки.
 - 24. Покрытия для твёрдого сплава. Свойства различных типов покрытий.
- 25. Механизмы износа режущей кромки. Виды износа режущей кромки, причины и решения.
 - 26. Основные токарные операции. Теория точения и растачивания.
 - 27. Режимы резания при точении и растачивании.
 - 28. Передний угол и угол наклона главной режущей кромки токарных резцов.
- 29. Глубина резания. Подача на оборот. Параметры срезаемого слоя при точении и растачивании.
- 30. Влияние формы токарной пластины и главного угла в плане на толщину и ширину стружки.
 - 31. Расчёт потребляемой мощности при точении и растачивании.
- 32. Токарные пластины без задних углов и с задними углами. Обзор державок и оправок.
- 33. Системы крепления и современные способы закрепления пластин Sandvik Coromant для токарного инструмента.
 - 34. Три основные области применения токарных инструментальных пластин (R, M, F).
- 35. Особенности стружкодробления при точении и растачивании. Диаграмма стружкодробления.

- 36. Теория сверления отверстий. Четыре метода сверления. Максимальная глубина отверстия.
- 37. Скорость резания для свёрл со сменными пластинами, напаянными пластинами и цельных свёрл.
 - 38. Сравнение цельных твердосплавных и быстрорежущих свёрл.
- 39. Режимы резания при сверлении. Влияние скорости резания и подачи на результаты сверления.
 - 40. Расчёт потребляемой мощности, крутящего момента и осевой силы при сверлении.
- 41. Теория фрезерования. Виды фрез. Скорость резания, подача на зуб, подача на оборот, минутная подача при фрезеровании.
 - 42. Глубина резания и ширина фрезерования.
 - 43. Попутное и встречное фрезерование.
 - 44. Диаметр фрезы, взаимное положение фрезы и заготовки.
 - 45. Особенности стружкообразования в зависимости от положения фрезы.
- 46. Три основные области применения фрезерных инструментальных пластин (H, M, L).
- 47. Фрезы с главным углом в плане 45 и 90 градусов, Фрезы с круглыми пластинами твёрдого сплава.
 - 48. Кинематический обзор распространённых фрезерных операций.
- 49. Выбор фрезерных пластин и фрезерного инструмента в соответствии с рекомендациями Sandvik Coromant.
 - 50. Выбор геометрии пластины и марки твёрдого сплава для фрезерования.
- 51. Расчёт потребляемой мощности при фрезеровании. Примеры расчётов режимов резания при фрезеровании.

Для самостоятельной работы используются методические указания по освоению дисциплины и издания из списка приведенной ниже основной и дополнительной литературы.

4.2.2.5. Перечень тем контрольных работ, рефератов, ТР, РГР, РПР Не планируется.

4.2.2.6. Примерный перечень тем курсовых работ (проектов) Не планируется.

5. Образовательные технологии

В процессе изучения дисциплины "Высокопроизводительная обработка резанием" применяется диалоговая технология проведения лекций, лабораторных работ в активной и интерактивной формах.

В качестве активных и интерактивных форм проведения занятий в рамках дисциплины применяются:

- дискуссия форма проведения занятия, при которой обучающиеся высказывают своё мнение по проблеме, заданной преподавателем;
- Case-study (разбор конкретных ситуаций) форма проведения занятия, при которой обучающиеся совместно с преподавателем анализируют конкретную производственную проблему или сложившуюся ситуацию;
- доклад (презентация) публичное сообщение, представляющее собой развёрнутое изложение определённой темы. Доклад может быть представлен различными участниками образовательного процесса: преподавателем, обучающимся, коллективом обучающихся, приглашённым экспертом. Докладчик готовит необходимые материалы в виде текста, презентации PowerPoint, иллюстрации и т.д.;
- моделирование исследование объектов познания на их моделях; построение и изучение моделей реально существующих предметов или явлений для их определения, либо улучшения их характеристик, рационализации способов их построения, управления ими и прогнозирования.

На каждое лабораторное занятие обучающимся формируются как индивидуальные, так и коллективные задания (исходные данные, в соответствии с методическими указаниями по выполнению лабораторных работ). Отчёт по лабораторным работам обучающийся составляет индивидуально во время лабораторного занятия и по его окончании, в свободное время. Защита отчётов по лабораторным работам проводится на контрольных неделях в рамках текущего контроля успеваемости.

При проведении всех видов занятий занятий применяется мультимедийный электронный курс "Технология обработки металлов резанием", разработанный в партнёрском взаимодействии с концерном Sandvik COROMANT. По теме каждого практического занятия обучающимся демонстрируются презентации с элементами анимации и видео фильмы. В конце занятия проводится совместное обсуждение и оценивание полученных результатов.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины. Фонды оценочных материалов (средств) приведены в приложении.

7. Учебно-методическое и информационное обеспечение дисциплины.

7.1. Основная учебно-методическая литература по дисциплине

- 1. Скуратов Д.Л. Формообразование поверхностей деталей. Обработка материалов резанием: учебное пособие / Д.Л. Скуратов, В.Н. Трусов, Т.Н. Андрюхина. 2-е изд. Самара: Самарский государственный технический университет, ЭБС АСВ, 2016. 175 с. ISBN 978-5-7964-1894-9. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/91142.html (дата обращения: 11.11.2020). Режим доступа: для авторизир. пользователей http://www.iprbookshop.ru/91142.html
- 2. Карандашов К.К. Обработка металлов резанием: учебное пособие / К.К. Карандашов, В.Д. Клопотов. Саратов: Профобразование, 2020. 266 с. ISBN 978-5-4488-0933-0. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/99934.html (дата обращения: 11.11.2020). Режим доступа: для авторизир. пользователей http://www.iprbookshop.ru/99934.html
- 3. Архипова Н. А. Процессы и операции формообразования. Режимы резания: учебное пособие / Н.А. Архипова, Т.А. Блинова, В.Я. Дуганов. Белгород: Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2018. 64 с. ISBN 2227-8397. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/92291.html (дата обращения: 11.11.2020). Режим доступа: для авторизир. пользователей http://www.iprbookshop.ru/92291.html
- 4. Егоркин О. В. Процессы и операции формообразования: учебно-методическое пособие / О.В. Егоркин, О.Н. Старостина. Саратов: Вузовское образование, 2019. 52 с. ISBN 978-5-4487-0584-7. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/86940.html (дата обращения: 11.11.2020). Режим доступа: для авторизир. пользователей http://www.iprbookshop.ru/86940.html
- 5. Грубый С.В. Расчет параметров и показателей процесса резания: учебное пособие / С.В. Грубый. Москва, Вологда: Инфра-Инженерия, 2020. 192 с. ISBN 978-5-9729-0463-1. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/98449.html (дата обращения: 11.11.2020). Режим доступа: для авторизир. пользователей http://www.iprbookshop.ru/98449.html
- 6. Технология конструкционных материалов. Физико-механические основы обработки металлов резанием и металлорежущие станки : учебное пособие / В. Е. Гордиенко, А. А. Абросимова, В. И. Новиков [и др.]. Санкт-Петербург: Санкт-Петербургский государственный архитектурно-строительный университет, ЭБС АСВ, 2017. 84 с. ISBN 978-5-9227-0703-9. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/74354.html (дата обращения: 11.11.2020). Режим доступа: для авторизир. пользователей http://www.iprbookshop.ru/74354.html

- 7. Завистовский С.Э. Обработка материалов и инструмент: учебное пособие / С.Э. Завистовский. Минск: Республиканский институт профессионального образования (РИПО), 2019. 447 с. ISBN 978-985-503-907-6. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/93388.html (дата обращения: 11.11.2020). Режим доступа: для авторизир. пользователей http://www.iprbookshop.ru/93388.html
- 8. Кузнецов В. Г. Обработка металлов резанием: учебное пособие / В.Г. Кузнецов, Ф.А. Гарифуллин, Г.А. Аминова. Казань: Казанский национальный исследовательский технологический университет, 2015. 275 с. ISBN 978-5-7882-1648-5. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/80236.html (дата обращения: 11.11.2020). Режим доступа: для авторизир. пользователей http://www.iprbookshop.ru/80236.html
- 9. Козлов А. А. Расчет режимов резания: учебное пособие / А.А. Козлов, А.М. Козлов. Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2017. 96 с. ISBN 978-5-88247-818-5. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/83179.html (дата обращения: 11.11.2020). Режим доступа: для авторизир. пользователей http://www.iprbookshop.ru/83179.html
- 10. Конструктивные элементы и геометрические параметры лезвийных режущих инструментов: Практикум для студентов / сост. Карпов А.В. [Электронный ресурс]. Электрон. текстовые дан. (4,7 Мб). Муром: МИ ВлГУ, 2017. 1 электрон. опт. диск (CD-R). Систем. требования: процессор х86 с тактовой частотой 500 МГц и выше; 512 Мб ОЗУ; Windows XP/7/8; видеокарта SVGA 1280х1024 High Color (32 bit); привод CD-ROM. Загл. с экрана. № госрегистрации 0321703785 https://www.mivlgu.ru/iop/mod/resource/view.php?id=52066
- 11. Параметрическая оптимизация обработки резанием: Практикум по дисциплине "Высокопроизводительная обработка резанием" для студентов образовательной программы 15.04.05 Конструкторско-технологическое обеспечение машиностроительных производств / сост. Карпов А.В. [Электронный ресурс]. Электрон. текстовые дан. (0,6 Мб). Муром: МИ ВлГУ, 2022. 1 электрон. опт. диск (CD-R). Систем. требования: процессор х86 с тактовой частотой 500 МГц и выше; 512 Мб ОЗУ; Windows XP/7/8; видеокарта SVGA 1280х1024 High Color (32 bit); привод CD-ROM. Загл. с экрана. https://www.mivlgu.ru/iop/mod/resource/view.php?id=52067

7.2. Дополнительная учебно-методическая литература по дисциплине

- 1. Райхельсон В.А. Обработка резанием сталей, жаропрочных и титановых сплавов с учетом их физико-механических свойств / В.А. Райхельсон. Москва: Техносфера, 2018. 508 с. ISBN 978-5-94836-476-6. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/84694.html (дата обращения: 11.11.2020). Режим доступа: для авторизир. пользователей http://www.iprbookshop.ru/84694.html
- 2. Фещенко В.Н. Токарная обработка: учебник / В.Н. Фещенко, Р.Х. Махмутов. Москва: Инфра-Инженерия, 2016. 460 с. ISBN 978-5-9729-0131-9. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/51737.html (дата обращения: 11.11.2020). Режим доступа: для авторизир. пользователей http://www.iprbookshop.ru/51737.html
- 3. Дулькевич А.О. Токарная и фрезерная обработка. Программирование системы ЧПУ НААЅ в примерах : пособие / А.О. Дулькевич. Минск : Республиканский институт профессионального образования (РИПО), 2016. 72 с. ISBN 978-985-503-547-4. Текст : электронный // Электронно-библиотечная система IPR BOOKЅ : [сайт]. URL: http://www.iprbookshop.ru/67767.html (дата обращения: 11.11.2020). Режим доступа: для авторизир. пользователей http://www.iprbookshop.ru/67767.html
- 4. Финишная обработка поверхностей при производстве деталей / С.А. Клименко, М.Ю. Копейкина, В. И. Лавриненко [и др.]; под редакцией С. А. Чижик, М. Л. Хейфец. Минск: Белорусская наука, 2017. 377 с. ISBN 978-985-08-2201-7. Текст: электронный //

Электронно-библиотечная система IPR BOOKS : [сайт]. — URL: http://www.iprbookshop.ru/74094.html (дата обращения: 11.11.2020). — Режим доступа: для авторизир. пользователей - http://www.iprbookshop.ru/74094.html

- 5. Механическая обработка тел вращения: учебно-методическое пособие / М.Г. Галкин, И.В. Коновалова, В.Н. Ашихмин, А.С. Смагнн. Екатеринбург: Уральский федеральный университет, ЭБС АСВ, 2015. 222 с. ISBN 978-5-321-02430-0. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/66171.html (дата обращения: 11.11.2020). Режим доступа: для авторизир. пользователей http://www.iprbookshop.ru/66171.html
- 6. Кожевников Д.В., Кирсанов С.В. Резание материалов: Учебник для студентов высших учебных заведений / под общей редакцией С.В. Кирсанова. М.: Машиностроение, 2007. 304 с. 50 экз.
- 7. Высокопроизводительная обработка металлов резанием. М.: Издательство "Полиграфия", 2003. 301 с. https://disk.yandex.ru/i/UzLGHNZ32fxmXQ
- 8. Технология обработки металлов резанием: Учеб. пособие. Академия AB Sandvik Coromant, 2009. 250 с. https://disk.yandex.ru/i/RmXi30Db79LJ1A
- 9. Технология обработки металлов резанием: Учеб. пособие. Академия AB Sandvik Coromant, 2017 https://disk.yandex.ru/i/7n7fPPPrrU9ucg

7.3. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

- В образовательном процессе используются информационные технологии, реализованные на основе информационно-образовательного портала института (www.mivlgu.ru/iop), и инфокоммуникационной сети института:
 - предоставление учебно-методических материалов в электронном виде;
- взаимодействие участников образовательного процесса через локальную сеть института и Интернет;
- предоставление сведений о результатах учебной деятельности в электронном личном кабинете обучающегося.

Информационные справочные системы:

- 1. https://disk.yandex.ru/d/QXCdH-Qanq39zQ электронный интерактивный учебный курс "Технология обработки металлов резанием" (Metal Cutting Technology) концерна Sandvik Coromant (Швеция).
- 2. https://disk.yandex.ru/i/XxxtxPW4-GcHqw учебные плакаты по обработке металлов резанием концерна Sandvik Coromant (Швеция).
- 3. https://disk.yandex.ru/d/DkhsiCAKUsXGhw видеосеминары по высокопроизводительным методам обработки резанием от специалистов концерна Sandvik Coromant (Швеция).
- 4. http://eksmast.ru портал "Экспериментальная мастерская Виктора Леонтьева", посвящённый обработке материалов резанием.
- 5. https://sites.google.com/site/cuttingofmaterials/home открытый онлайн-курс "Основы теории резания материалов" (автор: В.Н. Доля).
- 6. https://disk.yandex.ru/i/1DsuI7EwOgl6Rw учебный видеофильм "Элементы конструкции резца", подготовленный кафедрой технологии машиностроения МИ ВлГУ.
- 7. https://disk.yandex.ru/i/gMlKXoXlVT-4Kg учебный видеофильм «Маятниковый угломер», подготовленный кафедрой технологии машиностроения МИ ВлГУ.
- 8. https://disk.yandex.ru/i/5vDpeS6Ndw05TA учебный видеофильм "Универсальный угломер", подготовленный кафедрой технологии машиностроения МИ ВлГУ.
- 9. https://disk.yandex.ru/d/PbGoedx-obwyTQ фотоальбом "Угломеры различных конструкций", подготовленный кафедрой технологии машиностроения МИ ВлГУ.
- 10. https://disk.yandex.ru/d/BHpfSH3c_UqwtA фотоальбом "Измерение углов резцов маятниковым угломером", подготовленный кафедрой технологии машиностроения МИ ВлГУ.

- 11. https://disk.yandex.ru/d/qbLRp9cGRYEjpA фотоальбом "Измерение углов резцов универсальным угломером", подготовленный кафедрой технологии машиностроения МИ ВлГУ.
- 12. https://disk.yandex.ru/d/xtBdK_xwN7oQ7g фотоальбом "Измерение углов фрезы и сверла", подготовленный кафедрой технологии машиностроения МИ ВлГУ.
 - 13. https://extxe.com портал "Современные технологии производства".
- 14. https://extxe.com/category/mashinostroenie/obrabotka портал "Современные технологии производства" (рубрика "Обработка").
- 15. https://www.mivlgu.ru/iop/mod/resource/view.php?id=52052 конспект лекций по дисциплине "Высокопроизводительная обработка резанием" на информационно-образовательном портале МИ ВлГУ.
- 16. https://www.mivlgu.ru/iop/mod/url/view.php?id=52053 видеолекции и наглядные материалы к лекциям по дисциплине "Высокопроизводительная обработка резанием" на информационно-образовательном портале МИ ВлГУ.
- 17. https://www.mivlgu.ru/iop/mod/url/view.php?id=52058 обучающие видеоматериалы, посвящённые процессам обработки резанием.
- 18. https://www.mivlgu.ru/iop/mod/url/view.php?id=52059 обучающие видеоматериалы, посвящённые кинематике высокопроизводительной обработки резанием.
- 19. https://www.mivlgu.ru/iop/mod/resource/view.php?id=60313 архив специализированного программного обеспечения для выполнения лабораторных работ по дисциплине "Высокопроизводительная обработка резанием".

Программное обеспечение:

Kaspersky Endpoint Security для бизнеса - Стандартный Russian Edition. 500-999 Node 2 year Educational Renewal (продление) (Гражданско-правовой договор бюджетного учреждения №2020.526633 от 23.11.2020 года)

РЕД ОС (Соглашение №140/05-21У от 18.05.2021 года о сотрудничестве в области науки, развития инновационной деятельности)

7.4. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

iprbookshop.ru

mivlgu.ru

disk.yandex.ru

eksmast.ru - портал "Экспериментальная мастерская Виктора Леонтьева", посвящённый обработке материалов резанием.

mivlgu.ru/iop

8. Материально-техническое обеспечение дисциплины

Лаборатория металлорежущего оборудования

Станки: токарно-револьверный 1Г325; токарно-винторезный 16К20; токарновинторезный 16Б25С; консольно-фрезерный 6М82; токарный автомат 1Б136; зубодолбежный станок5В12; зубофрезерный станок 5В310; универсальная делительная головка УДГ-Д-320; токарно-винторезный с ЧПУ 16Б16Т1; станок точильно-шлифовальный ЗТШ-2; система управления 2С42, макеты узлов технологического оборудования.

Компьютерный класс. Помещение для самостоятельной работы обучающихся ПК Intel Core i7-4790 3.6 GHz-2 шт., ПК Intel Core i5-4570 3.2 GHz-10 шт.

Лаборатория инновационного оборудования.

Станок токарный малогабаритный с ЧПУ. СТ-4.2 с блоком управления (ООО МП «Реабин»), станок малогабаритный с ЧПУ трёхкоординатный штатив (вариант Г) с блоком управления (ООО МП «Реабин»), ПК Intel Celeron 2.4 GHz/RAM 1024 Mb/HDD 80Gb -2 шт., ПК Intel Celeron 0,8 GHz/RAM 256 Mb/HDD 40Gb -2 шт., станок фрезерный малогабаритный

четырехкоординатный с ЧПУ, минитокарный станок SM-300E; комплект наглядных пособий (плакатов) – 34 шт.

Лаборатория резания

Внутришлифовальный станок 132184—3A228; поперечно-строгальный станок 132153 ОД627; плоскошлифовальный станок 132130 451AP; универсально-фрезерный станок 675ПФ 1984 132171.

9. Методические указания по освоению дисциплины

Для успешного освоения теоретического материала обучающийся знакомится с основной и дополнительной литературой, дополнительными учебными пособиями и методическими материалами к лекционным занятиям, наглядными материалами по темам лекций (плакаты, схемы, видеофильмы), составляет индивидуальный конспект лекций. По возникающим вопросам и затруднениям обучающемуся предоставляется возможность обратиться к преподавателю за консультацией (согласно расписанию еженедельных консультаций, либо по окончании соответствующего лекционного занятия).

До выполнения лабораторных работ обучающийся самостоятельно изучает (повторяет) соответствующий раздел теоретического материала, пользуясь основной и дополнительной литературой, индивидуальным конспектом лекций. В начале каждого лабораторного занятия преподаватель разъясняет тему занятия, кратко излагает теоретический материал по теме занятия, после чего обучающийся знакомится с методическими указаниями по выполнению лабораторной работы, уясняет содержание и порядок выполнения работы, требования к отчёту по лабораторной работе. Лабораторная работа проводятся в специализированных лабораториях кафедры технологии машиностроения МИ ВлГУ. Обучающиеся выполняют индивидуально задачу по определению оптимальных параметров режущей части инструментов и режима резания с помощью специализированного программного обеспечения, доступного на ИОП МИ ВлГУ. Полученные результаты исследований сводятся в отчёт и защищаются по традиционной методике до начала следующего лабораторного занятия. Необходимый теоретический материал, задание, алгоритм выполнения лабораторной работы и требования к отчёту приведены в методических указаниях, размещённых и доступных для скачивания на ИОП МИ ВлГУ.

Изучение тем, выносимых на самостоятельное освоение, осуществляется обучающимся в рамках внеаудиторной работы в соответствии с объёмом (часами), указанными в настоящей рабочей программе. При изучении тем обучающийся пользуется основной и дополнительной литературой, дополнительными учебными пособиями и методическими материалами, наглядными материалами по соответствующим темам (плакаты, схемы, мультимедийный оффлайн-курс, видеолекции, видеопособия, видеосеминары, фотоальбомы, базы данных, онлайн-курс и т.д.). Обучающемуся рекомендуется кратко изложить самостоятельно изученный материал в индивидуальном конспекте лекций, либо в форме краткого отчёта по изученной теме. По возникающим вопросам и затруднениям обучающемуся предоставляется возможность обратиться к преподавателю за консультацией (согласно расписанию еженедельных консультаций, либо по окончании каждого аудиторного занятия). Качество изучения тем, вынесенных на самостоятельное освоение, проверяется в рамках текущего контроля успеваемости в течение соответствующего семестра и во время прохождения обучающимся промежуточной аттестации по дисциплине по окончании соответствующего семестра.

Форма заключительного контроля при промежуточной аттестации — экзамен. Для проведения промежуточной аттестации по дисциплине разработаны фонд оценочных средств и балльно-рейтинговая система оценки учебной деятельности студентов. Оценка по дисциплине выставляется в информационной системе и носит интегрированный характер, учитывающий результаты оценивания участия студентов в аудиторных занятиях, качества и своевременности выполнения заданий в ходе изучения дисциплины и промежуточной аттестации.

Фонд оценочных материалов (средств) по дисциплине

Высокопроизводительная обработка резанием

1. Оценочные материалы для проведения текущего контроля успеваемости по дисциплине

Вопросы для устного опроса обучающихся на контрольных неделях:

Рейтинг-контроль № 1:

- 1. В чём состоит взаимосвязь формы поверхности и движений инструмента?
- 2. Каким образом можно воспроизвести образующие и направляющие линии поверхностей при их формообразовании резанием?
 - 3. Каковы основные методы формообразования поверхностей резанием?
- 4. Приведите примеры движений резания при различных методах формообразования. Какие движения резания являются формообразующим, а какие - только размерообразующими?
 - 5. В чём состоит суть метод копирования?
 - 6. В чём состоит суть метод следа?
 - 7. В чём состоит суть метод касания?
 - 8. В чём состоит суть метода огибания?
- 9. Главное движение резания: технологическое назначение, формы траектории, скорость. Примеры.
- 10. Движение подачи: технологическое назначение, формы траектории, скорость. Примеры.
 - 11. Результирующее движение резания: формы траектории, скорость. Примеры.
- 12. Расставьте векторы скоростей движений резания при заданном способе обработки (точение наружное цилиндрическое, точение внутреннее, ротационное точение, подрезка торца, отрезка резцом, сверление, фрезерование встречное и попутное).
- 13. Дайте определение следующих кинематических элементов процесса резания: векторы скоростей движений резания; рабочая плоскость; поверхность главного движения; поверхность резания; кинематический угол скорости резания; кинематический угол подачи. Примеры.
 - 14. Охарактеризуйте принципиальную кинематическую схему резания № 1.
 - 15. Охарактеризуйте принципиальную кинематическую схему резания № 2.
 - 16. Охарактеризуйте принципиальную кинематическую схему резания № 3.
- 17. Что такое кинематический угол скорости резания? Какова его роль при обработке резанием?
- 18. Трансформация угловых параметров режущего инструмента в процессе резания. Причины и следствия.
- 19. Трансформация угловых параметров режущего инструмента вследствие погрешностей его установки: изменение углов в плане.
- 20. Трансформация угловых параметров режущего инструмента вследствие погрешностей его установки: изменение переднего и заднего углов.
- 21. Трансформация угловых параметров режущего инструмента вследствие кинематических особенностей процесса резания.

Рейтинг-контроль № 2:

- 1. Кинематические углы в плане: определение, примеры.
- 2. Кинематический угол наклона главной режущей кромки инструмента (на примере точения).
 - 3. Кинематический передний угол инструмента (на примере точения).
 - 4. Кинематический задний угол инструмента (на примере точения).
- 5. Какими параметрами определяется значение кинематического угла наклона главной режущей кромки?

- 6. Какими параметрами определяется значение кинематического переднего угла?
- 7. Какими параметрами определяется значение кинематического заднего угла?

Рейтинг-контроль № 3:

- 1. Точение: технологическое назначение; классификация токарных резцов; инструментальные материалы для резцов; диапазоны применяемых режимов резания.
 - 2. Каковы геометрические параметры режущей части перетачиваемых резцов?
 - 3. Каковы геометрические параметры режущей части неперетачиваемых резцов?
- 4. Дайте характеристику параметров срезаемого слоя и соотношение режимных параметров при точении.
- 5. В чём состоят кинематические особенности обработки отверстий расточными резцами?
 - 6. В чём состоят кинематические особенности отрезки заготовок отрезными резцами?
- 7. В чём состоят кинематические особенности обработки торцовых поверхностей проходными резцами?
- 8. В чём состоят кинематические особенности обработки торцовых поверхностей подрезными резцами?
- 9. В чём состоят кинематические особенности строгания? Дайте характеристику движений резания и параметров срезаемого слоя.
- 10. В чём состоят кинематические особенности долбления? Дайте характеристику движений резания и параметров срезаемого слоя.
- 11. В чём состоит общность геометрических и кинематических черт процессов точения, строгания и долбления?
- 12. Дайте характеристику параметров режущей части инструментов, срезаемого слоя и соотношения режимных параметров при сверлении и рассверливании. Виды свёрл. Кинематика сверления.
- 13. Дайте характеристику параметров режущей части инструментов, срезаемого слоя и соотношения режимных параметров при зенкеровании. Конструкции зенкеров.
- 14. Дайте характеристику параметров режущей части инструментов, срезаемого слоя и соотношения режимных параметров при развёртывании. Конструкции развёрток.
- 15. Фрезерование: технологическое назначение; основные типы фрез и их назначение; характеристика движений резания.
- 16. Фрезерование. Кинематические особенности: рабочий и холостой циклы; угол контакта; встречное и попутное фрезерование.
- 17. Фрезерование. Поверхности на обрабатываемом материале. Дайте определения глубины резания и ширины фрезерования (на конкретных схемах).
- 18. Дайте характеристику параметров срезаемого слоя при цилиндрическом и торцовом фрезеровании.
- 19. Понятие о равномерности фрезерования. Каким образом обеспечивается равномерность фрезерования?

Контрольные вопросы к лабораторным работам:

Лабораторная работа № 1 "Параметрическая оптимизация процесса точения":

- 1. В чём состоит назначение и процедура параметрической оптимизации процесса точения?
- 2. По какому критерию в лабораторной работе осуществлялась параметрическая оптимизация процесса точения?
- 3. Какие факторы были приняты в качестве ограничивающих при параметрической оптимизации процесса точения?

Лабораторная работа № 2 "Параметрическая оптимизация процесса фрезерования":

1. В чём состоит назначение и процедура параметрической оптимизации процесса фрезерования?

- 2. По какому критерию в лабораторной работе осуществлялась параметрическая оптимизация процесса фрезерования?
- 3. Какие факторы были приняты в качестве ограничивающих при параметрической оптимизации процесса фрезерования?

Лабораторная работа № 3 "Параметрическая оптимизация процесса разрезания":

- 1. В чём состоит назначение и процедура параметрической оптимизации процесса разрезания?
- 2. По какому критерию в лабораторной работе осуществлялась параметрическая оптимизация процесса разрезания?
- 3. Какие факторы были приняты в качестве ограничивающих при параметрической оптимизации процесса разрезания?
- 4. В чём состоит кинематическая особенность процесса разрезания круглого проката дисковой пилой?

Лабораторная работа № 4 "Равномерность фрезерования":

- 1. В чем состоит преимущество равномерного фрезерования?
- 2. Сформулируйте условие равномерного фрезерования.
- 3. Каким образом следует подбирать цилиндрическую фрезу с целью достижения максимально возможной равномерности её эксплуатации?

Общее распределение баллов текущего контроля по видам учебных работ для студентов

Рейтинг-контроль 1	устный опрос, отчёт по практическому занятию	15
Рейтинг-контроль 2	устный опрос, отчёт по практическому занятию	15
Рейтинг-контроль 3	устный опрос, отчёт по практическому занятию	15
Посещение занятий студентом		5
Дополнительные баллы (бонусы)		5
Выполнение семестрового плана самостоятельной работы		5

2. Промежуточная аттестация по дисциплине Перечень вопросов к экзамену / зачету / зачету с оценкой. Перечень практических задач / заданий к экзамену / зачету / зачету с оценкой (при наличии)

Вопросы для подготовки к экзамену по дисциплине "Высокопроизводительная обработка резанием"

- 1. Понятие об изделии, производственном и технологическом процессах.
- 2. Классификация способов обработки поверхностей.
- 3. Основы кинематической теории формообразования поверхностей режущими инструментами. Взаимосвязь формы поверхности и движений инструмента.
 - 4. Методы формообразования поверхностей: метод копирования.
 - 5. Методы формообразования поверхностей: метод следа.
 - 6. Методы формообразования поверхностей: метод касания.
 - 7. Методы формообразования поверхностей: метод огибания.

- 8. Виды движений резания. Главное движение резания. Движение подачи. Результирующее движение резания.
- 9. Скорости движений резания. Скорость главного движения резания. Скорость движения подачи. Скорость результирующего движения резания.
- 10. Кинематические элементы резания: векторы скоростей движений резания; рабочая плоскость; поверхность главного движения; поверхность резания; кинематический угол скорости резания; кинематический угол подачи.
 - 11. Принципиальная кинематическая схема резания № 1.
- 12. Принципиальная кинематическая схема резания № 2. Кинематический угол скорости резания.
- 13. Принципиальная кинематическая схема резания № 3. Кинематический угол скорости резания.
- 14. Трансформация угловых параметров режущего инструмента в процессе резания. Причины и следствия.
- 15. Трансформация угловых параметров режущего инструмента вследствие погрешностей его установки: изменение углов в плане.
- 16. Трансформация угловых параметров режущего инструмента вследствие погрешностей его установки: изменение переднего и заднего углов.
- 17. Трансформация угловых параметров режущего инструмента вследствие кинематических особенностей процесса резания.
- 18. Система кинематических геометрических параметров режущего инструмента: кинематические углы в плане.
- 19. Система кинематических геометрических параметров режущего инструмента: кинематический угол наклона главной режущей кромки.
- 20. Система кинематических геометрических параметров режущего инструмента: кинематический передний угол.
- 21. Система кинематических геометрических параметров режущего инструмента: кинематический задний угол.
 - 22. Расчет кинематического угла наклона главной режущей кромки.
 - 23. Расчет кинематического переднего угла.
 - 24. Расчет кинематического заднего угла.
- 25. Точение: технологическое назначение; классификация токарных резцов; инструментальные материалы для резцов; диапазоны применяемых режимов резания.
- 26. Точение: виды твердосплавных пластин по способу крепления; геометрические параметры режущей части перетачиваемых резцов.
- 27. Точение: виды твердосплавных пластин по способу крепления; геометрические параметры режущей части неперетачиваемых резцов.
 - 28. Точение: параметры срезаемого слоя и соотношение режимных параметров.
 - 29. Разновидности токарной обработки: растачивание отверстий расточными резцами.
 - 30. Разновидности токарной обработки: отрезка заготовок отрезными резцами.
- 31. Разновидности токарной обработки: обточка торцовых поверхностей проходными резцами.
- 32. Разновидности токарной обработки: подрезка торцовых поверхностей подрезными резцами.
- 33. Строгание и долбление: характеристика движений резания; параметры срезаемого слоя.
- 34. Процессы точения, строгания и долбления: общность геометрических и кинематических черт.
- 35. Обработка заготовок осевыми инструментами. Сверление: конструкция и геометрические параметры спиральных сверл; характеристика движений резания; параметры срезаемого слоя.
- 36. Обработка заготовок осевыми инструментами. Зенкерование: конструкция и геометрические параметры зенкеров; характеристика движений резания; параметры срезаемого слоя.

- 37. Обработка заготовок осевыми инструментами. Развертывание: конструкция и геометрические параметры разверток; характеристика движений резания; параметры срезаемого слоя.
- 38. Фрезерование: технологическое назначение; основные типы фрез и их назначение; характеристика движений резания.
- 39. Фрезерование. Кинематические особенности: рабочий и холостой циклы; угол контакта; встречное и попутное фрезерование.
- 40. Фрезерование. Поверхности на обрабатываемом материале. Глубина резания и ширина фрезерования.
 - 41. Фрезерование. Параметры срезаемого слоя.
 - 42. Фрезерование. Понятие о равномерности фрезерования.

Методические материалы, характеризующие процедуры оценивания

Формой промежуточной аттестации обучающихся по дисциплине "Высокопроизводительная обработка резанием" является экзамен. Оценка формируется на основании итогового рейтинга обучающегося, складывающегося из семестрового и экзаменационного рейтингов. Семестровый рейтинг обучающегося включает в себя баллы, начисляемые по результатам работы на лабораторных занятиях, выступления с презентациями по темам занятий, результатов текущего контроля успеваемости на контрольных неделях, а также бонусные баллы за посещаемость, активность и надлежащую учебную дисциплину.

На контрольных неделях осуществляется сплошной и/или индивидуальный устный опрос обучающихся по освоенным темам лекций, лабораторных занятий с использованием оценочных средств для проведения текущего контроля успеваемости.

Для проведения экзамена составляются экзаменационные билеты, включающие 2 вопроса из перечня экзаменационных вопросов (заданий), либо тестовое задание.

На основе базы тестовых вопросов (задач) программным комплексом информационнообразовательного портала МИ ВлГУ формируются в автоматическом режиме тестовые задания для обучающихся. Программный комплекс формирует индивидуальные задания для каждого зарегистрированного в системе обучающегося и устанавливает время прохождения тестирования. Результатом тестирования является процент правильных ответов, на основании его формируется индивидуальный рейтинг обучающегося и определяется итоговая оценка за семестр (в соответствии с Положением о проведении текущего контроля успеваемости и промежуточной аттестации обучающихся МИ ВлГУ).

Максимальная сумма баллов, набираемая студентом по дисциплине равна 100.

Оценка в баллах	Оценка по шкале	Обоснование	Уровень сформированности компетенций
Более 80	«Отлично»	Содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному	Высокий уровень
66-80	«Хорошо»	Содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом	Продвинутый уровень

		сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками	
50-65	«Удовлетворительно»	Содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки	Пороговый уровень
Менее 50	«Неудовлетворительно»	Содержание курса не освоено, необходимые практические навыки работы не сформированы, выполненные учебные задания содержат грубые ошибки	Компетенции не сформированы

3. Задания в тестовой форме по дисциплине

Примеры заданий:

1. К какой группе обрабатываемых материалов по классификации ISO относится нержавеющая аустенитная сталь 12X18H10T?

Выберите один ответ:

ISO-N

ISO-S

ISO-P

ISO-K

ISO-H

ISO-M

- 2. Осуществляют цилиндрическое фрезерование плоской заготовки на горизонтальнофрезерном станке. Диаметр фрезы $D=63\,$ мм, число зубьев z=14. Фрезеровщик выставил следующие режимы резания: частота вращения фрезы $n=80\,$ об/мин, минутная подача стола с заготовкой $sm=280\,$ мм/мин. Определите расчётную шероховатость (высоту остаточных микронеровностей) Rzp, мкм, обработанной поверхности детали. Ответ округлите до сотых долей мкм.
- 3. Максимальная технологически допустимая величина подачи при чистовой обработке ограничивается:

Выберите один ответ:

мощностью станка

прочностью слабого звена механизма подачи станка требуемой шероховатостью обработанной поверхности.

4. В каком случае режущая кромка пластины будет наиболее острой? Пластина не имеет покрытия Пластина имеет CVD-покрытие

Пластина имеет PVD-покрытие.

- 5. Укажите правильные рекомендации для обработки заготовки торцовой фрезой: применяйте встречное фрезерование используйте фрезу с диаметром на 20-50% больше ширины фрезерования используйте фрезу с диаметром, равным ширине фрезерования применяйте попутное фрезерование используйте шпиндель максимально возможного типоразмера установите центр фрезы по оси симметрии заготовки смещайте центр фрезы относительно оси симметрии заготовки.
- 6. Во сколько раз можно увеличить подачу на зуб при одной и той же толщине стружки (т.е. нагрузке на кромку), если использовать фрезу с главным углом в плане пластин 45 градусов вместо фрезы с главным углом в плане пластин 90 градусов? Введите дробное число, округлив до первого знака после запятой.
- 7. Во сколько раз можно увеличить подачу на зуб при одной и той же толщине стружки (т.е. нагрузке на кромку), если использовать фрезу с главным углом в плане пластин 10 градусов вместо фрезы с главным углом в плане пластин 90 градусов? Введите дробное число, округлив до первого знака после запятой.

Полный перечень тестовых заданий с указанием правильных ответов, размещен в банке вопросов на информационно-образовательном портале института по ссылке https://www.mivlgu.ru/iop/question/edit.php?courseid=2924&cat=29707%2C98813

Оценка рассчитывается как процент правильно выполненных тестовых заданий из их общего числа.