Министерство науки и высшего образования Российской Федерации

Муромский институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИ ВлГУ)

Кафедра *ТБ*

«УТВЕРЖДАЮ»
Заместитель директора по УР
Д.Е. Андрианов
21.05.2024

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Основы водоснабжения и водоотведения

Направление подготовки

08.03.01 Строительство

Профиль подготовки

Теплогазоснабжение и вентиляция

Семестр	Трудоем- кость, час./зач. ед.	Лек- ции, час.	Практи- ческие занятия, час.	Лабора- торные работы, час.	Консуль- тация, час.	Конт- роль, час.	Всего (контак- тная работа), час.	СРС, час.	Форма промежу- точного контроля (экз., зач., зач. с оц.)
3	108 / 3	16	24	8	1,6	0,25	49,85	58,15	Зач.
Итого	108 / 3	16	24	8	1,6	0,25	49,85	58,15	

1. Цель освоения дисциплины

Целью изучения дисциплины "Основы водоснабжения и водоотведения" является ознакомление студентов с принципами проектирования и эксплуатации систем водоснабжения и водоотведения, формирование компетенций в соответствии с требованиями ФГОСВО.

Задачами дисциплины являются:

- освоение инженерной терминологии изучаемой дисциплины;
- формирование базовых знаний нормативной литературы водоснабжения и водоотведения;
- ознакомление с методами сбора, систематизации и анализа данных для проектирования, эксплуатации или реконструкции систем водоснабжения и водоотведения населенных мест:
 - ознакомление со схемами водоснабжения и водоотведения населенных мест;
- обучение методам проектирования инженерных систем водоснабжения и водоотведения.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина опирается на знания, полученные при изучении таких дисциплин как Физика, Инженерная геодезия, Инженерная геология и экология. Знания и навыки, полученные при изучении дисциплины «Основы водоснабжения и водоотведения», используются при решении технических, конструкторских и исследовательских задач.

3. Планируемые результаты обучения по дисциплине

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые компетенции (код, содержание	Планируемые результаты о соответствии с индикатором	Наименование оценочного	
компетенции)	Индикатор достижения компетенции	Результаты обучения по дисциплине	средства
ОПК-4 Способен	ОПК-4.1 Выявляет	знать основные понятия	устный опрос,
использовать в	основные требования	водоснабжения и	тесты
профессиональной	нормативно-правовых и	водоотведения (ОПК-4.1)	
деятельности	нормативно-технических	знать основные	
распорядительную и	документов, предъявляемые	требования нормативно-	
проектную документацию, а	к зданиям, сооружениям,	правовых и нормативно-	
также нормативные правовые	инженерным системам	технических документов,	
акты в области строительства,	жизнеобеспечения	предъявляемые к	
строительной индустрии и		системам водоснабжения	
жилищно-коммунального		и водоотведения (ОПК-	
хозяйства		4.1)	
ОПК-6 Способен участвовать	ОПК-6.1 Выполняет	уметь проектировать	устный опрос,
в проектировании объектов	проектирование объектов	системы водоснабжения и	тесты
строительства и жилищно-	строительства и жилищно-	водоотведения (ОПК-6.1)	
коммунального хозяйства, в	коммунального хозяйства		
подготовке расчетного и	ОПК-6.3 Участвует в	уметь готовить проектную	
технико-экономического	подготовке проектной	документацию систем	
обоснований их проектов,	документации, в том числе с	водоснабжения и	
участвовать в подготовке	использованием средств	водоотведения (ОПК-6.3)	
проектной документации, в	автоматизированного		
том числе с использованием	проектирования и		
средств автоматизированного	вычислительных		
проектирования и	программных комплексов		
вычислительных			
программных комплексов			

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 3 зачетные единицы, 108 часов.

4.1. Форма обучения: очная

Уровень базового образования: среднее общее. Срок обучения 4г.

4.1.1. Структура дисциплины

			пе		онтак обуча гичес	ающі	ихся	c	сом	ота	
№ п\п	Раздел (тема) дисциплины	Семестр	Лекции	Практические занятия	Лабораторные работы	Контрольные работы	KII / KP	Консультация	Контроль	Самостоятельная работа	Форма текущего контроля успеваемости (по неделям семестра), форма промежуточной аттестации(по семестрам)
1	Водоснабжение	3	6	24	8					30	отчет, тестирование
2	Методы улучшения качества воды	3	2							8	тестирование
3	Водоотведение	3	8							20,15	тестирование
Всего за семестр		108	16	24	8			1,6	0,25	58,15	Зач.
Итого		108	16	24	8			1,6	0,25	58,15	

4.1.2. Содержание дисциплины 4.1.2.1. Перечень лекций

Семестр 3

Раздел 1. Водоснабжение

Лекция 1.

Системы и схемы водоснабжения населенных пунктов. Нормы водопотребления. Режим водопотребления и расчетные расходы (2 часа).

Лекция 2.

Устройство и оборудование водопроводной сети. Проектирование водопроводной сети (2 часа).

Лекция 3.

Водозаборные сооружения. Водопроводные очистные сооружения (2 часа).

Раздел 2. Методы улучшения качества воды

Лекция 4.

Методы обеззараживания воды. Требования к качеству воды (2 часа).

Раздел 3. Водоотведение

Лекция 5.

Основные элементы и схемы систем канализации населенных пунктов. Основы гидравлического расчета канализационных сетей (2 часа).

Лекция 6.

Сооружения для очистки сточных вод. Биологическая очистка сточных вод (2 часа). Лекция 7.

Обработка осадков сточных вод. Процессы и сооружения для обезвоживания осадков сточных вод (2 часа).

Лекция 8.

Проблема утилизации осадков. Методы глубокой очистки и обеззараживания сточных вод (2 часа).

4.1.2.2. Перечень практических занятий

Семестр 3

Раздел 1. Водоснабжение

Практическое занятие 1

Системы и схемы водоснабжения населенного пункта (2 часа).

Практическое занятие 2

Расчет хозяйственно-питьевого и производственного водопотребления населенного пункта (2 часа).

Практическое занятие 3

Расчет хозяйственно-питьевого и производственного водопотребления населенного пункта (2 часа).

Практическое занятие 4

Расчет расхода воды на пожаротушение (2 часа).

Практическое занятие 5

Общий расход воды городом и режим водопотребления (2 часа).

Практическое занятие 6

Общий расход воды городом и режим водопотребления (2 часа).

Практическое занятие 7

Проектирование водопроводной сети (2 часа).

Практическое занятие 8

Проектирование водопроводной сети (2 часа).

Практическое занятие 9

Расчет параметров водонапорной башни (2 часа).

Практическое занятие 10

Расчет параметров водонапорной башни (2 часа).

Практическое занятие 11

Расчет резервуаров чистой воды (2 часа).

Практическое занятие 12

Расчет водопроводов (2 часа).

4.1.2.3. Перечень лабораторных работ

Семестр 3

Раздел 1. Водоснабжение

Лабораторная 1.

Определение гидравлических сопротивлений участков водопроводной сети (4 часа).

Лабораторная 2.

Установление потокораспределения по участкам водопроводной сети (4 часа).

4.1.2.4. Перечень тем и учебно-методическое обеспечение самостоятельной работы

Перечень тем, вынесенных на самостоятельное изучение:

- 1. Источники водоснабжения.
- 2. Физические свойства и химический состав природных вод.
- 3. Нормативные документы, регламентирующие качество питьевой воды.
- 4. Расчетный расход воды, требуемый для водоснабжения.
- 5. Водоподъемные устройства. Водонапорные башни.
- 6. Системы и схемы водоснабжения.
- 7. Прямоточная, оборотная и последовательная системы водоснабжения.
- 8. Водозаборные сооружения. Устройство и размещение.
- 9. Водозаборная скважина, устройство и принцип работы.

- 10. Водоприемник, устройство и место расположения.
- 11. Водоохранная зона. Границы первого, второго и третьего поясов зон санитарной охраны.
- 12. Насосные установки. Виды принцип работы.
- 13. Оборудование насосных станций первого подъема, второго подъема.
- 14. Оборудование водонапорной башни.
- 15. Нормируемые параметры качества питьевой воды.
- 16. Методы очистки воды.
- 17. Реагентные и безреагентные технологические схемы улучшения качества воды.
- 18. Оборудование применяемое для улучшения качества воды.
- 19. Системы и схемы водоотведения.
- 20. Состав сточных вод.
- 21. Требования, предъявляемые для производственных сточных вод при их сбросе в городскую систему водоотведения.
- 22. Оборудование систем водоотведения.
- 23. Принципы трассировки систем водоотведения.
- 24. Виды труб и каналов, используемых для систем водоотведения.
- 25. Нормы водоотведения. Распределение притока сточных вод. Расчетный расход стоков.
- 26. Принципы прокладки водоотводящей сети.
- 27. Принципы перекачки сточных вод.
- 28. Виды применяемых насосов для перекачки сточных вод. Особенности применения.

Для самостоятельной работы используются методические указания по освоению дисциплины и издания из списка приведенной ниже основной и дополнительной литературы.

4.1.2.5. Перечень тем контрольных работ, рефератов, ТР, РГР, РПР Не планируется.

4.1.2.6. Примерный перечень тем курсовых работ (проектов) Не планируется.

4.2 Форма обучения: очно-заочная

Уровень базового образования: среднее общее. Срок обучения 5л.

Семестр	Трудоем- кость, час./ зач. ед.	Лек- ции, час.	Практи- ческие занятия, час.	Лабора- торные работы, час.	Консуль- тация, час.	Конт- роль,час.	Всего (контак- тная работа), час.	СРС, час.	Форма промежуточного контроля (экз., зач., зач. с оц.)
5	108 / 3	4	6		2	0,5	12,5	91,75	Зач.(3,75)
Итого	108 / 3	4	6		2	0,5	12,5	91,75	3,75

4.2.1. Структура дисциплины

			Контактная работа обучающихся с педагогическим работником							бота	
№ п\п	Раздел (тема) дисциплины	Семестр	Лекции	Практические занятия	Лабораторные работы	Контрольные работы	KII / KP	Консультация	Контроль	Самостоятельная работа	Форма текущего контроля успеваемости (по неделям семестра), форма промежуточной аттестации(по семестрам)
1	Водоснабжение	5	2	6						44	устный опрос
2	Методы улучшения качества воды	5								10	устный опрос
3	Водоотведение	5	2							37,75	устный опрос
Всего за семестр		108	4	6		+		2	0,5	91,75	Зач.(3,75)
Ито	Итого		4	6				2	0,5	91,75	3,75

4.2.2. Содержание дисциплины 4.2.2.1. Перечень лекций

Семестр 5

Раздел 1. Водоснабжение

Лекция 1.

Системы и схемы водоснабжения населенных пунктов. Нормы водопотребления. Режим водопотребления и расчетные расходы (2 часа).

Раздел 3. Водоотведение

Лекция 2.

Основные элементы и схемы систем канализации населенных пунктов (2 часа).

4.2.2.2. Перечень практических занятий

Семестр 5

Раздел 1. Водоснабжение

Практическое занятие 1.

Системы и схемы водоснабжения населенного пункта (2 часа).

Практическое занятие 2.

Расчет хозяйственно-питьевого и производственного водопотребления населенного пункта (2 часа).

Практическое занятие 3.

Проектирование водопроводной сети (2 часа).

4.2.2.3. Перечень лабораторных работ

Не планируется.

4.2.2.4. Перечень тем и учебно-методическое обеспечение самостоятельной работы

Перечень тем, вынесенных на самостоятельное изучение:

- 1. Источники водоснабжения.
- 2. Физические свойства и химический состав природных вод.
- 3. Нормативные документы, регламентирующие качество питьевой воды.
- 4. Расчетный расход воды, требуемый для водоснабжения.
- 5. Водоподъемные устройства. Водонапорные башни.
- 6. Системы и схемы водоснабжения.
- 7. Прямоточная, оборотная и последовательная системы водоснабжения.
- 8. Водозаборные сооружения. Устройство и размещение.
- 9. Водозаборная скважина, устройство и принцип работы.
- 10. Водоприемник, устройство и место расположения.
- 11. Водоохранная зона. Границы первого, второго и третьего поясов зон санитарной охраны.
 - 12. Насосные установки. Виды принцип работы.
 - 13. Оборудование насосных станций первого подъема, второго подъема.
 - 14. Оборудование водонапорной башни.
 - 15. Нормируемые параметры качества питьевой воды.
 - 16. Методы очистки воды.
 - 17. Реагентные и безреагентные технологические схемы улучшения качества воды.
 - 18. Оборудование применяемое для улучшения качества воды.
 - 19. Системы и схемы водоотведения.
 - 20. Состав сточных вод.
- 21. Требования, предъявляемые для производственных сточных вод при их сбросе в городскую систему водоотведения.
 - 22. Оборудование систем водоотведения.
 - 23. Принципы трассировки систем водоотведения.
 - 24. Виды труб и каналов, используемых для систем водоотведения.
- 25. Нормы водоотведения. Распределение притока сточных вод. Расчетный расход стоков.
 - 26. Принципы прокладки водоотводящей сети.
 - 27. Принципы перекачки сточных вод.
 - 28. Виды применяемых насосов для перекачки сточных вод. Особенности применения.

Для самостоятельной работы используются методические указания по освоению дисциплины и издания из списка приведенной ниже основной и дополнительной литературы.

4.2.2.5. Перечень тем контрольных работ, рефератов, ТР, РГР, РПР

- 1. Предмет и место водоснабжения и водоотведения в строительстве. Цели и задачи водоснабжения и водоотведения.
 - 2. Классификация систем водоснабжения населенных пунктов.
 - 3. Основные категории водопотребления.
 - 4. Материал, запорная регулирующая арматура.
 - 5. Принципы гидравлического расчета систем водоснабжения населенного пункта.
 - 6. Системы и схемы систем водоснабжения населенного пункта.

- 7. Нормы и режим водопотребления.
- 8. Водоснабжение объектов строительства.
- 9. Системы водоотведения населенного пункта их устройство и основные элементы.
- 10. Материалы и оборудование для городских систем водоотведения.
- 11. Системы и схемы наружных сетей водоснабжения.
- 12. Определение расчетных расходов и свободного напора воды для наружных сетей водоснабжения.
 - 13. Схемы трассировки и расчет водопроводной сети наружного водоснабжения.
 - 14. Арматура и сооружения систем наружного водоснабжения.
 - 15. Повысительные установки систем водоснабжения.
 - 16. Водопроводные насосные станции, виды, назначение.
 - 17. Водонапорные башни, резервуары, виды, назначение.
 - 18. Подземные и поверхностные источники водоснабжения.
- 19. Водозаборные сооружения для приема воды из подземных источников. Специальные водозаборные сооружения.
 - 20. Очистка и обеззараживание воды из подземных источников.
 - 21. Очистка и обеззараживание воды из наземных источников.
 - 22. Основные схемы очистных сооружений водопровода.
 - 23. Назначение систем и схем водоотведения.
- 24. Основные данные для проектирования систем и схем наружного водоотведения. Устройство сети наружного водоотведения.
 - 25. Классификация систем и схем водоотведения.
 - 26. Глубина заложения трубопроводов системы водоотведения.
 - 27. Расчет наружной системы водоотведения.
 - 28. Методы очистки сточных вод и состав очистных сооружений.
 - 29. Сооружения для обработки осадка.
- 30. Иловые площадки и сооружения для механического обезвоживания осадка, его термическая сушка.

4.2.2.6. Примерный перечень тем курсовых работ (проектов)

Не планируется.

5. Образовательные технологии

Использование проблемно-ориентированного междисциплинарного подхода к изучению дисциплины предусматривает комплексное освоение методов конструирования систем водоснабжения, водоподготовки и водоотведения.

При проведении аудиторных занятий предполагается использование различных форм обучения:

- пассивная форма (классическая лекция);
- интерактивная форма (использование механизмов взаимодействия с учащимися и контроля усвоения знаний, например, в виде либо "лекции-беседы", либо "лекции-дискуссии").

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Фонды оценочных материалов (средств) приведены в приложении.

7. Учебно-методическое и информационное обеспечение дисциплины.

7.1. Основная учебно-методическая литература по дисциплине

1. Бешенцев, В. А. Водоснабжение : учебное пособие / В. А. Бешенцев, Н. С. Трофимова. — Тюмень : Тюменский индустриальный университет, 2016. — 70 с. - http://www.iprbookshop.ru/83686

- 2. Чиркова, Е. И. Системы водоснабжения и водоотведения: учебное пособие / Е. И. Чиркова. Санкт-Петербург: Санкт-Петербургский государственный архитектурностроительный университет, ЭБС АСВ, 2018. 267 с. http://www.iprbookshop.ru/86433
- 3. Внутренние системы водоснабжения и водоотведения : лабораторный практикум для обучающихся по направлению подготовки 08.03.01 Строительство, профиль «Теплогазоснабжение, вентиляция, отопление, водоснабжение и водоотведение зданий, сооружений и населенных мест» / составители О. Н. Зубарева, В. А. Нечитаева, Р. Е. Хургин. Москва : Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2017. 60 с. http://www.iprbookshop.ru/63361

7.2. Дополнительная учебно-методическая литература по дисциплине

- 1. Инженерные системы и оборудование зданий. Водоснабжение и водоотведение : методические указания к курсовому проекту для обучающихся по направлению подготовки 08.03.01 Строительство / составители В. А. Нечитаева, Р. Е. Хургин. Москва : Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2017. 26 с. http://www.iprbookshop.ru/63665
- 2. Староверов, С. В. Водоснабжение промышленных предприятий / С. В. Староверов, В. М. Киреев. Белгород : Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2012. 93 с. http://www.iprbookshop.ru/28341

7.3. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

- В образовательном процессе используются информационные технологии, реализованные на основе информационно-образовательного портала института (www.mivlgu.ru/iop), и инфокоммуникационной сети института:
 - предоставление учебно-методических материалов в электронном виде;
- взаимодействие участников образовательного процесса через локальную сеть института и Интернет;
- предоставление сведений о результатах учебной деятельности в электронном личном кабинете обучающегося.

Информационные справочные системы:

Журнал «Сантехника. Отопление. Кондиционирование» https://www.c-o-k.ru/

Инженерный справочник http://www.dpva.ru/Guide/EngSystems/

Профессиональная справочная система "Инженерные сети" http://www.cntd.ru/inzhenernye_seti#home

Некоммерческое Партнерство "Инженеры по отоплению, вентиляции, кондиционированию воздуха, теплоснабжению и строительной теплофизике" https://www.abok.ru/

Программное обеспечение:

LibreOffice (Mozilla Public License v2.0)

7.4. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

iprbookshop.ru c-o-k.ru dpva.ru cntd.ru abok.ru mivlgu.ru/iop

8. Материально-техническое обеспечение дисциплины

Лекционная аудитория Проектор Acer Projector X1285; ноутбук HP.

Лаборатория водоотведения и водоподготовки

Стенд «Определение гидравлических характеристик водопроводной сети»; комплекс лабораторный «Исследование параметров работы насосов»; макет «Насос»; комплект учебно-наглядных пособий.

9. Методические указания по освоению дисциплины

Для успешного освоения теоретического материала обучающийся: знакомится со списком рекомендуемой основной и дополнительной литературы; уточняет у преподавателя, каким дополнительным пособиям следует отдать предпочтение; ведет конспект лекций и прорабатывает лекционный материал, пользуясь как конспектом, так и учебными пособиями.

На практических занятиях пройденный теоретический материал подкрепляется решением задач по основным темам дисциплины. Занятия проводятся в лекционном классе. Каждому студенту преподаватель выдает задание. В конце занятия обучающие демонстрируют полученные результаты преподавателю и при необходимости делают работу над ошибками.

До выполнения лабораторных работ обучающийся изучает соответствующий раздел теории. Перед занятием студент знакомится с описанием заданий для выполнения работы, внимательно изучает содержание и порядок проведения лабораторной работы. Лабораторная работа проводятся в лаборатории водоотведения и водоподготовки. Обучающиеся выполняют индивидуальные или общие (на подгруппу) задания в соответствии с заданием на лабораторную работу. Полученные результаты исследований сводятся в отчет и защищаются по традиционной методике в классе на следующем лабораторном занятии. Необходимый теоретический материал, индивидуальное задание, шаги выполнения лабораторной работы и требование к отчету приведены в методических указаниях, размещенных на информационнообразовательном портале института.

Самостоятельная работа оказывает важное влияние на формирование личности будущего специалиста, она планируется обучающимся самостоятельно. Каждый обучающийся самостоятельно определяет режим своей работы и меру труда, затрачиваемого на овладение учебным содержанием дисциплины. Он выполняет внеаудиторную работу и изучение разделов, выносимых на самостоятельную работу, по личному индивидуальному плану, в зависимости от его подготовки, времени и других условий.

Форма заключительного контроля при промежуточной аттестации — зачет. Для проведения промежуточной аттестации по дисциплине разработаны фонд оценочных средств и балльно-рейтинговая система оценки учебной деятельности студентов. Оценка по дисциплине выставляется в информационной системе и носит интегрированный характер, учитывающий результаты оценивания участия студентов в аудиторных занятиях, качества и своевременности выполнения заданий в ходе изучения дисциплины и промежуточной аттестации.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению 08.03.01 Строительство и профилю подготовки Теплогазоснабжение и вентиляция Рабочую программу составил ст. преподаватель Калиниченко М.В
Программа рассмотрена и одобрена на заседании кафедры $T \mathcal{B}$
протокол № 16 от 15.05.2024 года. Заведующий кафедрой <i>ТБ</i>
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии факультета
протокол № 6 от 21.05.2024 года. Председатель комиссии МСФ Калиниченко М.В. (Подпись) (Ф.И.О.)

Фонд оценочных материалов (средств) по дисциплине

Основы водоснабжения и водоотведения

1. Оценочные материалы для проведения текущего контроля успеваемости по дисциплине

Тесты

1. Трубопроводы диаметром более 500 мм могут прокладываться выше глубины промерзания в метрах на:

1-0.7: 2-0.5:3-0.3:4-0.1.

2. Минимальная глубина заложения до верха водоотводящей трубы в метрах составляет:

1-1,1:2-0.9: 3-0,7; 4-0,5; 5-0,3.

3. Наименьшая глубина заложения водоотводящих труб, Н, м, для различных диаметров определяется по формуле:

1-H=11промерз.; 2- H=11промерз "(0,3 •• 0,5); 3- H=11Промерз +(0,3... 0,5); 4- H=ың>омерз-(0,3...0,5) более 0,7+d.

4. Максимальная глубина заложения водоотводящих труб при условии открытой прокладки в суглинистых грунтах в метрах составляет:

1-7-8; 2-10-11; 3-12-13:4-5-6.

- 5. Наиболее распространенная формула определения расчетного расхода qp на участках водоотводящей сети:
 - 1-по удельному стоку qp = q0*F*Ko6uf
 - 2-по площади живого сечения qp = со*и
 - 3-по норме водоотведения qp = n*N*KO6n/24*3600
- 6. Минимальные скорости потока, м/с, в водоотводящей сети Д=150-200мм при расчетном наполнении 0,6 из условия незаиливания:

1-0,9; 2-0,8; 3-0,7; 4-0,5; 5-0,3.

7. Минимальные скорости потока, м/с, в водоотводящей сети Д=300-400 мм при расчетном наполнении 0,7 из условия незаиливания составляют:

1-0,9; 2-0,8; 3-0,7; 4-0,5; 5-0,3.

8. Минимальные скорости потока, м/с, в водоотводящей сети Д=450-500мм при расчетном наполнении 0,75 из условия незаиливания составляют:

1-0,9; 2-0,8; 3-0,7; 4-0,5; 5-0,3.

9. Минимальные скорости потока, м/с, в водоотводящей сети Д=600-800мм при расчетном наполнении 0,75 из условия незаиливания составляют:

1-1,5; 2-1,3; 3-1,15; 4-1,0; 5-0,9.

10. Минимальные скорости потока, м/с, в водоотводящей сети Д=900 мм при расчетном наполнении 0,75 из условия незаиливания составляют:

1-1,5; 2-1,3; 3-1,15; 4-1,0; 5-0,9.

11. Минимальные скорости потока, м/с, в водоотводящей сети Д=1000-1200 мм при расчетном наполнении 0,8 из условия незаиливания составляют:

1-1,5; 2-1,3; 3-1,15; 4-1,0; 5-0,9.

12. Минимальные скорости потока, м/с, в водоотводящей сети Д=1500 мм при расчетном наполнении 0,8 из условия незаиливания составляют:

1-1,5; 2-1,3; 3-1,15; 4-1,0; 5-0,9.

13. Минимальные скорости потока, м/с, в водоотводящей сети Д более 1500 мм при расчетном наполнении 0,8 из условия незаиливания составляют:

1-1,5; 2-1,3; 3-1,15; 4-1,0; 5-0,9.

14. Наибольшая расчетная скорость движения сточных вод, м/с, в металлических трубах бытовой сети из условия неистирания составляет:

1-10: 2-8:3-7:4-6:5-4.

15. Наибольшая расчетная скорость движения сточных вод, м/с, в металлических трубах дождевой сети из условия неистирания составляет:

1-10: 2-8:3-7:4-6:5-4.

16. Наибольшая расчетная скорость движения сточных вод, м/с, в неметаллических трубах бытовой сети из условия неистирания составляет:

1-10: 2-8:3-7:4-6:5-4.

17. Наибольшая расчетная скорость движения сточных вод, м/с, в неметаллических трубах дождевой сети из условия неистирания составляет:

1-10: 2-8:3-7:4-6:5-4.

18. Наибольшее расчетное наполнение, в долях диаметра, трубопроводов бытовой сети Д=150-200 мм из условия её вентиляции составляет:

1-0.6: 2-0,7: 3-0.75: 4-0.8: 5-0.9.

19. Наибольшее расчетное наполнение, в долях диаметра, трубопроводов бытовой сети Д=300-400 мм из условия её вентиляции составляет:

1-0.6: 2-0,7; 3-0.75: 4-0.8: 5-0.9.

20. Наибольшее расчетное наполнение, в долях диаметра, трубопроводов бытовой сети Д=450-900 мм из условия её вентиляции составляет:

1-0.6: 2-0,7: 3-0.75: 4-0.8: 5-0.9.

21. Наибольшее расчетное наполнение, в долях диаметра, трубопроводов бытовой сети Д=1000 и более мм из условия её вентиляции составляет:

1-0.6: 2-0.7: 3-0.75: 4-0.8: 5-0.9.

22.Выравнивание в колодцах бытовой сети по шелыгам производится в тех случаях, когда:

1-cl 2-d i более h г- hi; 2- d 2-d i менее h 2- hi;

- 3- cl 2-более d x вне зависимости от значения h 2 и hj; 4- d 2= d \ вне зависимости от значения h 2 и hi : 5-выравнивание производится только по воде.
- 23.Выравнивание в колодцах бытовой сети по шелыгам производится в тех случаях, когда:
- 1-cl 2-d 1 более h 2- hi; 2- d 2-d 1 менее h 2- hi; 3- d 2-более d 1 вне зависимости от значения h 2 и hi:
- 4-d 2=d 1 вне зависимости от значения h 2 и hi : 5-выравнивание производится толь-ко по воде.
- 24. И условия незаиливания скорость в дюкере, м/с, должна быть не менее: 1-0.5: 2-0.8: 3-1.0: 4-1.2: 5-1.5.
 - 25. Восходящая ветвь дюкера не должна иметь подъем в градусах более:

1-10: 2-20: 3-30:4-40: 5-60.

- 26. Диаметр дюкера, мм, должен быть не менее: 1-80: 2-100: 3-150: 4-200; 5-300.
- 27. Дюкер может быть запроектирован с одной рабочей и одной резервной ниткой, когда при минимальной нормативной скорости диаметр, мм. одной нитки менее:

1-80: 2-100: 3-150; 4-200.

- 28. На равнинных реках проектируется обычно две рабочих нитки дюкера, если диаметр, мм, каждой нитки не менее: 1-80: 2-100: 3-150: 4-200:
- 29. При выходе одной нитки дюкера из строя: 1-часть воды сбрасывается через аварийный выпуск: 2-аварийный режим в проектах не рассматривается:

3-весь расход пропускается по одной нитке за счет подпора в верхней камере.

- 30. Основной причиной проектирования бытовой сети на частичное заполнение является необходимость обеспечения:
- 1 -вентиляции сети ; 2-пропуска наибольшего расхода: 3- возможности приема дополнительного расхода при возросшем благоустройстве.
- 31. Для расчета самотечных водоотводящих сетей нельзя использовать расчетные таблицы:
- 1-Лукиных А.А., Лукиных Н.А.: 2- Фёдорова Н.Ф.; 3- Алексеева М.И., Кармазинова Ф.В.. Курганова А.М.; 4-Шевелёва Ф.А.
- 32. Для транспортировки кислотосодержащих стоков следует использовать трубы: 1-стальные; 2-керамические; 3-бетонные: 4-железобетонные.

- 33. На прямолинейных участках водоотводящей сети Д=150 мм для надежной её эксплуатации следует устанавливать смотровые колодцы на расстоянии, м. друг от друга:
 - 1-35: 2-50: 3-75: 4-100: 5-150; 6-200: 7-250-300.
- 34. На прямолинейных участках водоотводящей сети Д=200-450 мм для надежной её эксплуатации следует устанавливать смотровые колодцы на расстоянии, м. друг от друга: 1-35: 2-50: 3-75: 4-100: 5-150: 6-200: 7-250-300.
- 35. На прямолинейных участках водоотводящей сети Д=500-600 мм для надежной её эксплуатации следует устанавливать смотровые колодцы на расстоянии, м. друг от друга: 1-35: 2-50: 3-75: 4-100: 5-150; 6-200: 7-250-300.
- 36. На прямолинейных участках водоотводящей сети Д=700-900 мм для надежной её эксплуатации следует устанавливать смотровые колодцы на расстоянии, м. друг от друга: 1-35: 2-50: 3-75: 4-100: 5-150; 6-200: 7-250-300.
- 37. На прямолинейных участках водоотводящей сети диаметром более 2000мм для надежной её эксплуатации следует устанавливать смотровые колодцы на расстоянии, м. друг от друга: 1-35: 2-50: 3-75: 4-100: 5-150: 6-200: 7-250-300.
- 38. На прямолинейных участках водоотводящей сети Д=1000-1400 мм для надежной её эксплуатации следует устанавливать смотровые колодцы на расстоянии, м. друг от друга: 1-35: 2-50: 3-75: 4-100: 5-150: 6-200: 7-250-300.
- 39. На прямолинейных участках водоотводящей сети Д=1500-2000 мм для надежной её эксплуатации следует устанавливать смотровые колодцы на расстоянии, м. друг от друга: 1-35: 2-50: 3-75: 4-100: 5-150; 6-200: 7-250-300.
- 40. Трассировку самотечной водоотводящей сети при плоском рельефе местности следует производить . используя схему:

1-объемлещую: 2-по пониженной грани; 3-чрез квартальную.

41. Трассировку самотечной водоотводящей сети при ярко выраженном рельефе местности следует производить . используя схему:

1-объемлещую; 2-по пониженной грани: 3-чрез квартальную.

- 42. Для вновь строящихся городов или районов по капитальным затратам следует отдать предпочтение при первой очереди строительства системе водоотведения:
 - 1-общесплавной: 2- полной раздельной; 3-полураздельной: 4-не полной раздельной.
- 43. Для сложившихся больших городов чаще всего испльзуется система водоотведения: 1-общесплавная: 2-комбинированная: 3-полная раз-дельная; 4-полураздельная
- 44. Выравнивание в колодцах дождевой сети произодится по шелыгам в случаях, когда: 1- d2 более d1: 2- d2 менее d1; 3- h2 более h1; 4- d2=d1.
- 45. Выравнивание в колодцах дождевой сети производится по лоткам в случаях, когда: 1- d2 более d1: 2- d2 менее d1; 3- h2 более h1; 4- d2=d1.
- 46. При строительстве водоотводящих сетей наибольшее распространение получили трубы сечения:

1-полукруглого: 2-круглого; 3-прямоугольное; 4-трапецеидальное.

- 47. При уклоне поверхности земли менее минимального для прокладки водоотводящей сети, следует принять уклон прокладки трубопровода:
- 1- равным уклону поверхности земли; 2- равным минимальному уклону при наполнении менее нормативного; 3-максимальный: 4- обеспечивающий незаиливающие скорости.
- 48. При уклоне поверхности земли более минимального и менее максимального для прокладки водоотводящей сети, следует принять уклон прокладки трубопровода:
- 1- равным уклону поверхности земли; 2- равным минимальному уклону: 3-максимальный.
- 49. При уклоне поверхности земли более максимального для прокладки водоотводящей сети, следует принять уклон прокладки трубопровода:
- 1- равным уклону поверхности земли; 2- равным минимальному клону: 3- максимальный.
 - 50. Калицун. Рис. 4.4.а. На схеме приведена схема трассировки водоотводящей сети: 1-объемлющая: 2-по пониженной стороне квартала; 3-черезквартальная.

- 51. Калицун. Рис. 4.4.6. На схеме приведена схема трассировки водоотводящей сети: 1-объемлющая; 2-по пониженной стороне квартала; 3-черезквартальная.
- 52. Калицун. Рис. 4.4.в. На схеме приведена схема трассировки водоотводящей сети: 1-объемлющая; 2-по пониженной стороне квартала; 3-черезквартальная.
- 53. Удельное водоотведение бытовых сточных вод, л/сут на одного жителя в городах, застроенных зданиями оборудованными внутренним водопроводом и канализацией без ванн, составляет: 1-125-160: 2-160-230: 3.-230-350: 4-350- 500.
- 54. Удельное водоотведение бытовых сточных вод, л/сут на одного жителя в городах, застроенных зданиями оборудованными внутренним водопроводом и канализацией с ваннами местными водонагревателями, составляет: 1-125- 160: 2-160-230: 3.-230-350: 4-350-500.

Общее распределение баллов текущего контроля по видам учебных работ для студентов

Рейтинг-контроль 1	4 практических работы, промежуточный тест.	26
Рейтинг-контроль 2	4 практических работы, 1 лабораторная работа, промежуточный тест.	32
Рейтинг-контроль 3	4 практических работы, 1 лабораторная работа, промежуточный тест.	32
Посещение занятий студентом		8
Дополнительные баллы (бонусы)		0
Выполнение семестрового плана самостоятельной работы		2

2. Промежуточная аттестация по дисциплине Перечень вопросов к экзамену / зачету / зачету с оценкой. Перечень практических задач / заданий к экзамену / зачету / зачету с оценкой (при наличии)

ОПК-4

Блок 1 (знать)

- 1. Выберите недостатки центробежных насосов.
- а) Ухудшают качество перекачиваемой воды.
- б) Являются источниками шума и вибрации.
- в) Необходимо усиливать основание в месте установки насоса.
- 2. По какой формуле рассчитывается полная вместимость напорно-запасных баков?
- a) W=T·qchr,m.
- δ) W=qsphr/(4n).
- B) $W=\phi Tqhr,m$.
- Γ) V=BW+W Π .
- 3. Где запрещается установка насосных установок хозяйственно-питьевого назначения? Укажите все возможные варианты.
 - а) Под больничными помещениями.
 - б) Под рабочими комнатами административных зданий.
 - в) В отдельно стоящих зданиях ЦТП.
 - 4. По какой формуле определяется необходимый (требуемый) напор на вводе?
 - a) $H=f\Sigma il(1+kl)/m$.

- 6) Hltot=il(1+k1).
- B) $H=H_{BB}+h+H_{geom}+\Sigma H_{ltot}+H_{f}$.
- 5. Что называется диктующим прибором?
- а) Водоразборный прибор, расположенный на первом этаже здания, ближе всего к вводу.
- б) Водоразборный прибор, расположенный на верхнем этаже, наиболее удалённый от ввода геометрически.
- в) Водоразборный прибор, расположенный на верхнем этаже, наиболее удалённый от ввода по длине трубопроводной сети.
- 6. Какова максимально допустимая скорость движения воды в трубах системы внутреннего водоснабжения?
 - a) 3 m/c.
 - б) 1 м/с.
 - B) 2.5 m/c.
 - Γ) 1,2 M/c.
 - 7. Каковы цели и задачи водоснабжения?
- а) Системы водоснабжения объектов любого назначения должны обеспечивать потребителей водой заданного качества, в требуемом количестве и под необходимым напором.
- б) Системы водоснабжения должны обеспечивать очистку природной воды до питьевого качества и транспортирование её к месту потребления.
- в) Системы водоснабжения должны обеспечивать водой промышленные предприятия и коммунально-бытовые объекты водой с качеством не ниже, чем требуется в ГОСТ 2874-82 «Вода питьевая».
 - 8. Какого качества должна быть вода в производственных системах водоснабжения?
 - а) Ниже, чем в хозяйственно-питьевом водопроводе.
 - б) Согласно требованиям технологического процесса.
 - в) Умягчена, обесцвечена, обескислорожена.
 - 9. Выберите правильное определение оборотных систем водоснабжения.
- а) Системы оборотного использования воды применяют в производственных зданиях, когда вода после однократного использования в одном цехе может быть использована на другие нужды без очистки.
- б) Оборотная система водоснабжения это система по которой подаётся вода на все нужды: хозяйственно-питьевые, производственные и противопожарные.
- в) В оборотных системах предусматривается многократное использование одной и той же воды.
- 10. Когда применяются системы водоснабжения с повысительной насосной установкой?
- а) Когда гарантийный напор в часы максимального водопотребления недостаточен, т.е. ниже требуемого и водоразбор характеризуется большой неравномерностью.
- б) Когда напор в наружном водопроводе постоянно или периодически ниже требуемого и когда во внутреннем водопроводе режим водопотребления характеризуется малой неравномерностью.
- в) Когда напор в наружном водопроводе достаточен и когда существенно изменяется водопотребление в здании.
 - 11. В каких случаях применяются зонные системы водоснабжения?
 - а) В высотных зданиях, когда напор в сети превышает максимально допустимый.
- б) В промышленных зданиях, когда существует несколько видов потребителей, предъявляющих к качеству воды различные требования.
 - в) Только в коммунально-бытовых объектах.
 - 12. В каких случаях применяются системы с разрывом струи и приёмным резервуаром?
 - а) Когда гарантийный напор в сети превышает максимально допустимый.
 - б) Когда в водопроводе слишком мал гарантийный напор 5 м (0,05 МПа) и менее.
 - в) При наличии в системе противопожарного водопровода.

Блок 2 (уметь)

- 1. Каков рекомендуемый диапазон скорости воды в трубах системы внутреннего водоснабжения при пропуске хозяйственно-питьевого расхода при питании от городского водопровода?
 - a) 2.5 3 m/c.
 - б) 3 4 м/с.
 - B) 1 1.7 m/c.
- 2. Каков рекомендуемый диапазон скорости воды в трубах системы внутреннего водоснабжения при пропуске хозяйственно-питьевого расхода при питании от напорно-запасных баков?
 - a) 1 1.7 m/c.
 - б) 3 5 м/с.
 - $^{\rm B}) 1 \, {\rm M/c}$.
- 3. По какой формуле вычисляется максимальный секундный расход воды на расчётном участке сети?
 - a) $q=5qo\alpha$.
 - б) q=0,2b
 - $^{\mathrm{B}}$) q=0,347
- 4. Каково минимальное расстояние от стены здания до внутриквартальной сети водоснабжения?
 - a) 9 10 м.
 - б) 10 15 м.
 - в) 5 8 м.
- 5. По какому признаку отличаются друг от друга системы местного и централизованного горячего водоснабжения?
 - а) По способу приготовления теплоносителя.
 - б) По способу аккумуляции теплоты.
 - в) По радиусу и сфере действия.
- 6. Верно ли утверждение? Местные системы горячего водоснабжения связаны с развитием мощных источников теплоты. Для их эксплуатации необходима сложная служба городского теплоснабжения.
 - а) Да.
 - б) Нет.
 - 7. Что называется вводом внутреннего водопровода?
- а) Вводом внутреннего водопровода считается участок трубопровода, соединяющий наружную водопроводную сеть с внутренней до водомерного узла или запорной арматуры, размещённых внутри здания.
- б) Вводом внутреннего водопровода считается участок трубопровода, непосредственно проходящий в стене здания или фундаменте.
- в) Вводом внутреннего водопровода считается участок внутриквартальной сети от стены здания до первого колодца.
 - 8. Как определяется минимальная глубина заложения вводов?
- а) Минимальная глубина заложения вводов, согласно СНиП 2.04.01-85* составляет 1,5 м.
- б) Минимальная глубина ввода определяется как глубина промерзания грунта минус 0,3 м.
- в) Глубина заложения труб вводов зависит от глубины заложения наружной водопроводной сети, их размещают ниже глубины промерзания грунта.
- 9. Какие трубы не применяются для устройства ввода водопровода? Укажите все возможные ответы.
 - а) Пластмассовые.
 - б) Стальные неоцинкованные.
 - в) Асбестоцементные.

- г) Стальные оцинкованные.
- д) Чугунные раструбные.
- е) Металлополимерные.
- 10. Какой водомерный узел называется «простым»?
- а) Без манометра.
- б) Без отключающих задвижек.
- в) Без обводной линии.
- 11. Каков минимальный диаметр турбинных водомеров, выпускаемых отечественной промышленностью?
 - а) 32 мм.
 - б) 40 мм.
 - в) 50 мм.
 - г) 70 мм.
 - 12. Выберите основные недостатки чугунных труб. Укажите все возможные варианты.
 - а) Плохое сопротивление динамическим нагрузкам.
 - б) Наименьший срок службы.
 - в) Большая масса.
 - г) Высокая стоимость фасонных частей.

Блок 3 (владеть)

- 1. Верно ли утверждение? Закрытые тепловые сети предусматривают нагрев воды через поверхности, где теплоноситель и нагреваемая вода не соприкасаются, а теплота передаётся через поверхности теплообмена.
 - а) Да.
 - б) Нет.
- 2. Какая система горячего водоснабжения более рациональна с точки зрения использования теплоты?
 - а) Открытая.
 - б) Закрытая.
- 3. Верно ли утверждение? Дополнительные ёмкости аккумуляторы теплоты необходимы для сглаживания колебаний потребления горячей воды при равномерном режиме водопотребления.
 - а) Да.
 - б) Нет.
- 4. Отметьте все возможные источники теплоты для децентрализованных систем горячего водоснабжения.
 - а) Твёрдое и газообразное топливо.
 - б) Электроэнергия.
 - в) Солнечная энергия.
 - г) Атомная энергия.
 - 5. Какие электронагреватели требуют большей мощности?
 - а) Проточного типа.
 - б) Ёмкостного типа.
 - 6. Выберите формулу, описывающую передачу теплоты (закон Фурье).
 - a) $qt=-\Box \Box t/\Box n = -\Box \text{ grad } t$.
 - σ) qt=σ σt/σn = σ σ grad t.
 - B) $Q=qF\square$.
- 7. С какой этажности в жилых зданиях необходимо устройство противопожарного водопровода?
 - а) С 9 этажей и более.
 - б) С 10 этажей и более.
 - в) С 12 этажей и более.
 - г) С 16 этажей и более.
 - 8. Из какого материала изготавливают трубы, обозначаемые аббревиатурой PP-R?

- а) Полипропилен.
- б) Поливинилхлорид.
- в) Полибутен.
- 9. Из какого материала изготавливают трубы с маркировкой ВТ-6?
- а) Железобетонные.
- б) Полибутеновые.
- в) Асбестоцементные.
- г) Стеклопластиковые.
- 10. Какого диаметра выпускаются отечественной промышленностью пожарные краны?
- а) 25 и 32 мм.
- б) 32 и 40 мм.
- в) 50 и 65 мм.
- г) 90 и 100 мм.
- 11. Какие элементы относятся к предохранительной арматуре?
- а) Краны.
- б) Задвижки.
- в) Водомеры.
- г) Клапаны.
- д) Регуляторы давления.
- 12. Чему равен радиус действия пожарного крана?
- а) Сумме длины пожарного шланга (рукава) и длины компактной части струи, равной высоте защищаемого помещения, но не менее 6 м для жилых и других зданий высотой до 50 м и 8 м при высоте здания более 50 м.
- б) Сумме длины пожарного шланга (рукава) и длины компактной части струи, равной высоте защищаемого помещения, но не менее 8 м для жилых и других зданий высотой до 50 м и 12 м при высоте здания более 50 м.
- в) Сумме длины пожарного шланга (рукава) и длины компактной части струи, равной высоте защищаемого помещения, но не менее 6 м для жилых и других зданий высотой до 45 м и 8 м при высоте здания более 45 м.

ОПК-6

Блок 1 (знать)

- 1. Верно ли утверждение? Водонагреватели проточного типа отличаются малой теплопроизводительностью и большой теплоёмкостью.
 - а) Да.
 - б) Нет.
- 2. При каком направлении движения теплоносителя относительно нагреваемой воды достигается лучший теплообмен в водо-водяных скоростных секционных водонагревателях?
 - а) При попутном движении теплоносителя и нагреваемой воды.
 - б) При противоточном движении.
 - 3. По какой формуле рассчитывается площадь поверхности нагрева водонагревателя?
 - a) m=Fвн/fc.
 - б) $F = \Box Qpt/(\Box k \Box t 3,6)$.
 - в) F=ma.
 - Γ) F=1000 Q1/q20.
 - 4. Какая температура горячей воды принимается обычно за расчётную?
 - a) 35 C-40 C.
 - 6) 40 C-50 C.
 - в) 55 С-60 С.
 - г) 70 C-90 C.
 - 5. Какие канализационные сети наиболее распространены?
 - а) Самотечные.
 - б) Напорные.

- 6. В каких случаях применяют насосные или пневматические установки на канализационной сети?
 - а) При соединении нескольких зданий.
 - б) При пересечении сетью препятствий.
 - в) Когда сточную воду невозможно отвести самотёком.

Блок 2 (уметь)

- 1. Какие установки применяются для предварительной обработки сточных вод? Выберите все возможные варианты.
 - а) Решётки.
 - б) Жироуловители.
 - в) Аэротенки.
 - г) Пневматические установки.
 - д) Грязеотстойники.
- 2. Является ли обязательным установка гидравлических затворов (сифонов) на приёмниках сточных вод.
 - а) Нет.
 - б) Только на бытовых приборах.
 - в) Только на производственных приёмниках.
 - г) Обязательна на всех приёмниках сточных вод.
 - 3. Для каких целей устанавливаются гидрозатворы (сифоны)?
 - а) Чтобы снизить скорость потока жидкости на входе в приёмник сточных вод.
 - б) Чтобы газы, образующиеся в канализационной сети, не проникали в помещение.
 - 4. Как правильно располагаются раструбы при соединении труб?
 - а) Должны быть обращены против направления движения сточных вод.
 - б) Должны быть обращены по направлению движения сточных вод.
- 5. Какие устройства для ликвидации засоров установлены на внутриквартальной канализационной сети внутри здания?
 - а) Ревизии.
 - б) Сифоны.
 - в) Выпуски.
 - г) Прочистки.
 - л) Решётки.
- 6. Для чего предназначены вытяжные трубопроводы, устанавливаемые в верхней части канализационной сети на стояках? Выберите все возможные варианты.
 - а) Для прочистки стояков при засоре.
 - б) Для удаления газов, образующихся в канализационной сети.
 - в) Для уравнивания давления в стояке при залповых сбросах.

Блок 3 (владеть)

- 1. Какова минимальная глубина заложения канализационной сети?
- а) На 0,3 м выше глубины промерзания грунта, но не менее 0,7 м.
- б) На 0,3 м ниже глубины промерзания грунта, но не менее 0,7 м.
- в) Равная глубине промерзания грунта.
- 2. Верно ли утверждение? Расчётная скорость движения сточной жидкости на следующем участке должна быть не меньше, чем на предыдущем.
 - а) Да.
 - б) Нет.
- 3. Верно ли утверждение? На самотечной сети канализации вдоль трассы диаметры на следующем участке не должны быть меньше, чем на предыдущем. (Увеличение диаметров по ходу сточной жидкости).
 - а) Да.
 - б) Нет.
- 4. Наполнение самотечного трубопровода вдоль трассы должно изменяться следующим образом.
 - а) Увеличиваться.

- б) Уменьшаться.
- в) Может изменяться как в большую, так и в меньшую сторону.
- 5. Смотровые колодцы на канализационных сетях устанавливают в следующих местах. Выберите все возможные варианты.
 - а) В местах присоединений.
 - б) В местах изменения направления трассы.
 - в) В местах изменения уклонов.
 - г) В местах изменения диаметров.
 - д) На прямых участках через определённое расстояние в зависимости от диаметра.
 - 6. Угол между присоединяемой и отводящей трубами должен быть не менее:
 - a) $45 \square$.
 - б) 60□.
 - в) 90□.
 - r) 120□.
 - д) 180□.
- 7. Наименьший диаметр труб самотечной внутриквартальной бытовой и производственной канализации составляет:
 - а) 100 мм.
 - б) 150 мм.
 - в) 200 мм.
 - г) 250 мм.
 - 8. Наименьший диаметр труб самотечной уличной ливневой канализации составляет:
 - а) 100 мм.
 - б) 150 мм.
 - в) 200 мм.
 - г) 250 мм.
- 9. Соединение трубопроводов разных диаметров самотечной канализационной сети выполняется следующими способами. Выберите все возможные варианты.
 - а) По оси труб.
 - б) По шелыгам.
 - в) По расчётному уровню жидкости.
 - г) По лотку трубы.
 - 10. Что такое незаиляющая скорость?
 - а) Скорость движения жидкости по илопроводам на очистных сооружениях.
- б) Минимально допустимая скорость движения сточной жидкости в самотечных трубопроводах, препятствующая выпадению взвешенных частиц на дно трубы и обеспечивающая самоочищение трубопровода.
 - в) Скорость движения воды в лотках производственной канализации.
 - 11. По какой формуле рассчитывается расход внутридомовых стоков?
 - a) $qtot=5qotot \square$.
 - б) q=□V.
 - в) qs=qtot+qso.
- 12. Каким образом изменяется уклон канализационного самотечного трубопровода по ходу трассы?
 - а) Должен возрастать.
 - б) Должен уменьшаться.
 - в) Может возрастать или уменьшаться.

Методические материалы, характеризующие процедуры оценивания

Индивидуальный семестровый рейтинг студента формируется на основе действующего в ВУЗе Положения "О проведении текущего контроля успеваемости и промежуточной аттестации обучающихся".

В течение семестра студент получает баллы успеваемости за выполнение всех видов учебных поручений: посещение лекций, выполнение лабораторных работ. Зачет выставляется в случае, если итоговая оценка студента составляет не менее 50 баллов.

Максимальная сумма баллов, набираемая студентом по дисциплине равна 100.

Оценка в баллах	Оценка по шкале	Обоснование	Уровень сформированности компетенций
Более 80	«Отлично»	Содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному	Высокий уровень
66-80	«Хорошо»	Содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками	Продвинутый уровень
50-65	«Удовлетворительно»	Содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки	Пороговый уровень
Менее 50	«Неудовлетворительно»	Содержание курса не освоено, необходимые практические навыки работы не сформированы, выполненные учебные задания содержат грубые ошибки	Компетенции не сформированы

3. Задания в тестовой форме по дисциплине

Примеры заданий:

Для приема подземных вод, залегающих на глубине более 50 метров, используют:

- Шахтные колодцы
- Каптажные камеры

- Горизонтальные водозаборы
- Водозаборные скважины

На возвышенном месте территории населенного пункта для аккумулирования запасов воды и регулирования неравномерности водопотребления и работы насосной станции II подъема сооружают:

- Водонапорную башню
- Очистные сооружения
- Резервуар чистой воды
- Пожарный гидрант

Что понимается под наполнением трубопровода при самотечном движении воды в канализационных сетях?

- Отношение площади живого сечения потока воды к гидравлическому радиусу трубы
- Объем сточных вод протекающих за определенное время по трубе, например за сутки или за час
- Отношение площади живого сечения протекающей воды к поперечной площади трубы
 - Отношение высоты слоя протекающей воды к внутреннему диаметру трубы

На какую глубину необходимо заглубить полимерные трубы водопровода холодной воды если глубина промерзания в данном населенном пункте равна 1 м. Водопровод проложен в грунте без тепловой изоляции

Определить расчетный (средний за год) суточный расход воды Qж, м3/сут, на хозяйственно-питьевые нужды населения поселка численность которого 12 тыс. человек; в населенном пункте 60% жителей проживают в домах, оборудованных внутренним водопроводом и канализацией с централизованным горячим водоснабжением (в данном случае, расчетноесреднесуточное (за год) хозяйственно-питьевое водопотреблениена одного жителя, 170 л/сут), оставшиеся 40% проживают в домах с водопроводом и канализацией, с ванными и местными водонагревателями (в данном случае, расчетное среднесуточное хозяйственно-питьевое водопотребление на одного жителя, 160 л/сут

Насосная станция второго подъёма доставляет в населенный пункт (число жителей 14 тыс. чел) в часы максимального разбора 2650 м3/сут воды. Населенный пункт застроен зданиями с водопроводом и канализацией, с ванными и местными водонагревателями, т.е. расчетное среднесуточное хозяйственно-питьевое водопотребление на одного жителя, составляет 160 л/сут. Определите потребность в хозяйственно-питьевой воде этого населенного пункта, если коэффициент суточной неравномерности водопотребления Ксут. max = 1.2.

Полный перечень тестовых заданий с указанием правильных ответов, размещен в банке вопросов на информационно-образовательном портале института по ссылке https://www.mivlgu.ru/iop/question/edit.php?courseid=378&category=24798%2C9202&qbshowtext=0&qbshowtext=1&recurse=0&recurse=1&showhidden=0

Оценка рассчитывается как процент правильно выполненных тестовых заданий из их общего числа.