Министерство науки и высшего образования Российской Федерации

Муромский институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИ ВлГУ)

Кафедра ПИн

«УТВЕРЖДАЮ»
Заместитель директора по УР
Д.Е. Андрианов
20.05.2025

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Компьютерное моделирование

Направление подготовки 09.03.04 Программная инженерия

Профиль подготовкиМетоды и средства разработки программного обеспечения

Семестр	Трудоем- кость, час./зач. ед.	Лек- ции, час.	Практи- ческие занятия, час.	Лабора- торные работы, час.	Консуль- тация, час.	Конт- роль, час.	Всего (контак- тная работа), час.	СРС, час.	Форма промежу- точного контроля (экз., зач., зач. с оц.)
8	144 / 4	20		24	4	0,35	48,35	69	Экз.(26,65)
Итого	144 / 4	20		24	4	0,35	48,35	69	26,65

1. Цель освоения дисциплины

Цель дисциплины: Обучение студентов использовать современные методы компьютерного моделирования для исследования информационных систем, вычислительных сетей и вычислительных процессов, систем массового обслуживания и систем управления запасами, других задач управления бизнес-процессами на уровне предприятий.

2. Место дисциплины в структуре ОПОП ВО

Изучение дисциплины "Компьютерное моделирование" базируется на дисциплинах: "Объектно-ориентированное программирование", "Структуры и алгоритмы обработки данных", а также является базой для ВКР.

3. Планируемые результаты обучения по дисциплине

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые компетенции (код,	Планируемые результаты с соответствии с индикаторог	Наименование оценочного	
содержание компетенции)	Индикатор достижения компетенции	Результаты обучения по дисциплине	средства
ПК-7 Способность оценивать временную и емкостную сложность программного обеспечения	ПК-7.2 Оценивает временную и емкостную сложность разработанных и алгоритмов, а также типовых решений и шаблонов проектирования	Знать алгоритмы, а также типовые решения и шаблоны проектирования (ПК-7.2) Уметь оценивать временную и емкостную сложность разработанных алгоритмов (ПК-7.2) Владеет навыками оценки временных затрат и сложности разработанных и алгоритмов, типовых решений и шаблонов	вопросы к устному опросу
		проектирования (ПК-7.2)	

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа.

4.1. Форма обучения: очная

Уровень базового образования: среднее общее. Срок обучения 4г.

4.1.1. Структура дисциплины

№ п\п	Раздел (тема) дисциплины	стр	Контактная работа обучающихся с педагогическим работником						вная работа	Форма текущего контроля успеваемости (по неделям	
		Семестр	Лекции	Практические занятия	Лабораторные работы	Контрольные работы	KII / KP	Консультация	Контроль	Самостоятельная работа	семестра), форма промежуточной аттестации(по семестрам)
1	Основы компьютерного моделирования	8	8							23	устный опрос
2	Технология имитационного моделирования	8	12							23	устный опрос
3	3 Функциональное моделирование				24					23	устный опрос
Всего	Всего за семестр		20		24			4	0,35	69	Экз.(26,65)
Итого		144	20		24			4	0,35	69	26,65

4.1.2. Содержание дисциплины 4.1.2.1. Перечень лекций

Семестр 8

Раздел 1. Основы компьютерного моделирования

Лекция 1.

Цели, задачи и содержание дисциплины. Ее место в учебном процессе (2 часа).

Лекция 2.

Общая схема процесса принятия решений. Классификация задач принятия решений (2 часа).

Лекция 3.

Принципы моделирования (2 часа).

Лекция 4.

Этапы в исследовании системы посредством имитационного моделирования. Построение концептуальной модели (2 часа).

Раздел 2. Технология имитационного моделирования

Лекция 5.

Основные понятия компьютерного моделирования (2 часа).

Лекция 6.

Моделирование параллельных процессов (2 часа).

Лекция 7.

Планирование компьютерных экспериментов (2 часа).

Лекция 8.

Основы создания имитационных моделей (2 часа).

Лекция 9.

Программное обеспечение имитационного моделирования (2 часа).

Лекция 10.

Моделирование сложных систем (2 часа).

4.1.2.2. Перечень практических занятий

Не планируется.

4.1.2.3. Перечень лабораторных работ

Семестр 8

Раздел 3. Функциональное моделирование

Лабораторная 1.

Построение простой компьютерной модели (4 часа).

Лабораторная 2.

Построение модели для систем массового обслуживания (4 часа).

Лабораторная 3.

Построение модели многоканальной СМО (4 часа).

Лабораторная 4.

Построение простой имитационной модели на языке программирования высокого уровня (4 часа).

Лабораторная 5.

Имитационное моделирование многоканальных СМО с использованием языков программирования высокого уровня (4 часа).

Лабораторная 6.

Моделирование экономического объекта (4 часа).

4.1.2.4. Перечень тем и учебно-методическое обеспечение самостоятельной работы

Перечень тем, вынесенных на самостоятельное изучение:

- 1. Численное моделирование. Численные методы решения уравнений и систем уравнений.
- 2. Численные методы интегрирования.
- 3. Численные методы решения дифференциальных уравнений.
- 4. Постановка задачи линейного программирования и методы её решения.
- 5. Построение двойственной задачи ЛП и методы её решения.
- 6. Основные понятия теории игр. Постановка игровых задач.
- 7. Методы и модели решения игровых задач.
- 8. Модели на графах. Понятие сетевого моделирования.
- 9. Планирование работ и расчёт параметров сетевого графика.
- 10. Задачи о максимальном потоке.
- 11. Транспортная задача.
- 12. Задача о кратчайшем пути.

Для самостоятельной работы используются методические указания по освоению дисциплины и издания из списка приведенной ниже основной и дополнительной литературы.

4.1.2.5. Перечень тем контрольных работ, рефератов, ТР, РГР, РПР Не планируется.

4.1.2.6. Примерный перечень тем курсовых работ (проектов) Не планируется.

5. Образовательные технологии

Для реализация компетентностного подхода предусматривается использование в учебном процессе активных и интерактивных форм проведения аудиторных и внеаудиторных занятий с целью формирования и развития профессиональных навыков обучающихся.

При чтении курса дисциплины применяются такие виды лекций, как вводная, обзорная, проблемная, лекция-презентация. Обязательны лабораторные работы с использованием ЭВМ.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины. Фонды оценочных материалов (средств) приведены в приложении.

7. Учебно-методическое и информационное обеспечение дисциплины.

7.1. Основная учебно-методическая литература по дисциплине

- 1. Лисяк В.В. Моделирование информационных систем: учебное пособие / Лисяк В.В., Лисяк Н.К.. Ростов-на-Дону, Таганрог: Издательство Южного федерального университета, 2018. 88 с. ISBN 978-5-9275-2881-3. https://www.iprbookshop.ru/87729.html
- 2. Химченко, А. В. Компьютерное моделирование технических систем : учебное пособие / А. В. Химченко, Н. И. Мищенко. Саратов : Вузовское образование, 2021. 165 с. https://www.iprbookshop.ru/110116.html

7.2. Дополнительная учебно-методическая литература по дисциплине

- 1. Замятина О. М. Моделирование систем: Учебное пособие. Томск: Изд-во ТПУ, 2009. 204 с. https://www.iprbookshop.ru/34683.html
- 2. Алиев Т.И. Основы моделирования дискретных систем. СПб: СПбГУ ИТМО, 2009. 363 с. https://books.ifmo.ru/book/445/osnovy_modelirovaniya_diskretnyh_sistem.htm

7.3. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

- В образовательном процессе используются информационные технологии, реализованные на основе информационно-образовательного портала института (www.mivlgu.ru/iop), и инфокоммуникационной сети института:
 - предоставление учебно-методических материалов в электронном виде;
- взаимодействие участников образовательного процесса через локальную сеть института и Интернет;
- предоставление сведений о результатах учебной деятельности в электронном личном кабинете обучающегося.

Информационные справочные системы:

https://yandex.ru/

http://old.exponenta.ru/soft/Others/gpss/gpss.asp

Программное обеспечение:

LibreOffice (Mozilla Public License v2.0)

Adobe Acrobat Reader DC (Общие условия использования продуктов Adobe)

Diagram Designer (Свободное программное обеспечение)

7.4. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

iprbookshop.ru books.ifmo.ru old.exponenta.ru mivlgu.ru/iop

8. Материально-техническое обеспечение дисциплины

Полигон учебных баз практики

12 шт. компьютеров Intel Core i5-10150 3,70 GHz / 16Gb(DDR4) / SSD-150Gb / Haff-23,8'; проектор ACER P1100 DLP Projector EMEA; экран проекционный настенный DRAPPER Apex STAR; маршрутизатор Gigabit Switch TEG-S16S; плоттер HP Design Jet T610. Маркерная доска. Доступ к сети Интернет.

Кабинет стандартизации и сертификации

Ноутбук ASUS A75n 17,1; доступ к сети Интернет; Проектор Асег X127H DLP; экран проекционный настенный DA-LITE 170*210мм. Комплект учебно-наглядных пособий.

9. Методические указания по освоению дисциплины

Для успешного освоения теоретического материала обучающийся:

- знакомится со списком рекомендуемой основной и дополнительной литературы;
- уточняет у преподавателя, каким дополнительным пособиям следует отдать предпочтение;
- ведет конспект лекций и прорабатывает лекционный материал, пользуясь как конспектом, так и учебными пособиями.

До выполнения лабораторных работ обучающийся изучает соответствующий раздел теории. Перед занятием студент знакомится с описанием заданий для выполнения работы, внимательно изучает содержание и порядок проведения лабораторной работы. Лабораторная работа проводятся в компьютерном классе. Обучающиеся выполняют индивидуальную задачу компьютерного моделирования в соответствии с заданием на лабораторную работу. Полученные результаты исследований сводятся в отчет и защищаются по традиционной методике в классе на следующем лабораторном занятии. Необходимый теоретический материал, индивидуальное задание, шаги выполнения лабораторной работы и требование к отчету приведены в методических указаниях, размещенных на информационнообразовательном портале института.

Самостоятельная работа оказывает важное влияние на формирование личности будущего специалиста, она планируется обучающимся самостоятельно. Каждый обучающийся самостоятельно определяет режим своей работы и меру труда, затрачиваемого на овладение учебным содержанием дисциплины. Он выполняет внеаудиторную работу и изучение разделов, выносимых на самостоятельную работу, по личному индивидуальному плану, в зависимости от его подготовки, времени и других условий.

Форма заключительного контроля при промежуточной аттестации — экзамен. Для проведения промежуточной аттестации по дисциплине разработаны фонд оценочных средств и балльно-рейтинговая система оценки учебной деятельности студентов. Оценка по дисциплине выставляется в информационной системе и носит интегрированный характер, учитывающий результаты оценивания участия студентов в аудиторных занятиях, качества и своевременности выполнения заданий в ходе изучения дисциплины и промежуточной аттестации.

Программа составлена в соответствии с требован 09.03.04 Программная инженерия и профилю подготовк программного обеспечения Рабочую программу составил к.т.н., доцент кафедры ПИн А.С	ки Методы и средства разработки
Программа рассмотрена и одобрена на заседании ка протокол № 27 от 13.05.2025 года. Заведующий кафедрой $\Pi U H$	
Рабочая программа рассмотрена и одобрена н комиссии факультета	а заседании учебно-методической
протокол № 9 от 15.05.2025 года. Председатель комиссии ФИТР	утарова Е.И. (Ф.И.О.)

Фонд оценочных материалов (средств) по дисциплине

Компьютерное моделирование

1. Оценочные материалы для проведения текущего контроля успеваемости по дисциплине

Блок 1 (знать).

- 1. Основные понятия моделирования систем.
- 2. Классификация видов моделирования систем.
- 3. Особенности построения математических моделей.
- 4. Компьютерное моделирование и вычислительный эксперимент.
- 5. Имитационное моделирование. Понятие статистического эксперимента.
- 6. Метод Монте-Карло.
- 7. Методы генерации случайных чисел.
- 8. Моделирование случайных событий.
- 9. Моделирование непрерывных случайных величин.
- 10. Сети Петри. Основные понятия.
- 11. Анализ сетей Петри.
- 12. Понятия «модель», «моделирование».
- 13. Разработка моделей систем на основе классического и системного подходов (сравнительный анализ).
- 14. Аналитический и имитационный метод моделирования систем (краткая характеристика).
- 15. Основные стадии разработки модели на базе системного подхода: макро- и микропроектирование.
 - 16. Основные характеристики моделей систем.
 - 17. Классификация видов моделирования систем по различным признакам.
- 18. Основные виды обеспечения машинного моделирования (краткая характеристика). Возможности машинного моделирования. Оценка эффективности машинного моделирования.
- 19. Формальная модель объекта. Закон функционирования системы, способы его задания. Алгоритм функционирования. Статические и динамические модели.
- 20. Непрерывно-детерминированные модели: краткая характеристика, примеры, возможные приложения.
 - 21. Системы массового обслуживания: основные понятия. Виды СМО.
 - 22. Потоки событий. Простейший поток событий, его характеристики.
- 23. Формализация Q-схемы: базовые предположения, сети массового обслуживания, параметры и алгоритмы функционирования Q-схемы. Формальное определение.
- 24. Агрегативный подход. Описание агрегата. Моделирование функционирования агрегата. Понятие об агрегативных системах.
- 25. Машинное моделирование системы: сущность, цели, требования к модели. Основные этапы моделирования систем (перечислить).

Блок 2 (уметь).

Вариант 1

В вычислительном центре в обработку принимаются три класса заданий A, B, C. Исходя из наличия оперативной памяти ЭВМ задания классов A и B могут решаться одновременно, а задания класса C монополизируют ЭВМ. Задания класса A поступают через 20+-5 мин, класса B — через 20+- 10 мин, класса C — через 30+-10 мин и требуют для выполнения: A — 20+-5 мин, B-21+-3 мин, C-28+-5 мин. Задачи класса C загружаются в ЭВМ, если она полностью свободна. Задачи классов A и B могут дозагружаться к решающейся задаче. Промоделировать работу системы на протяжении 8 часов.

Вариант 2

В машинном зале расположены две миниЭВМ и одно устройство подготовки данных (УПД). Пользователи приходят с интервалом 8+-2 мин и треть из них хочет использовать УПД и ЭВМ, а остальные только ЭВМ. Допустимая очередь в машинном зале составляет четыре человека, включая работающего на УПД. Работа на УПД занимает 8+-2 мин, а на ЭВМ – 17 мин. Кроме того, 20% работавших на ЭВМ возвращается для повторного использования УПД И ЭВМ. Промоделировать работу 1000 пользователей.

Вариант 3.Промоделировать работу врача терапевта. Интервалы приходов пациентов распределены равномерно в интервале 15 ± 10 . Время приема 15 ± 5 также распределено равномерно. Пациенты принимаются в порядке «первым пришел — первым обслужен». Модель работы врача должна обеспечить сбор статистики об очереди. Необходимо промоделировать работу врача в течение 6 часов.

Вариант 4.Промоделировать работу врача терапевта. Интервалы приходов пациентов распределены равномерно в интервале 17±7. Время приема 16±4 также распределено равномерно. Пациенты принимаются в порядке «первым пришел –первым обслужен». Модель работы врача должна обеспечить сбор статистики об очереди. Необходимо промоделировать работу врача в течение 3 часов.

Вариант 5.Промоделировать работу библиотекаря. Интервалы прихода читателей распределены равномерно в интервале 10±5. Время работы 8±4 с читателями также распределено равномерно. Читатели обслуживаются в порядке «первым пришел –первым обслужен». Модель работы библиотекаря на GPSS должна обеспечить сбор статистики об очереди. Необходимо промоделировать работу библиотекаря в течение 8 часов.Задание 4.Промоделировать работу библиотекаря. Интервалы прихода читателей распределены равномерно в интервале 12±8. Время работы 11±4 с читателями также распределено равномерно. Читатели обслуживаются в порядке «первым пришел –первым обслужен». Модель работы библиотекаря должна обеспечить сбор статистики об очереди. Необходимо промоделировать работу библиотекаря в течение 6 часов

Общее распределение баллов текущего контроля по видам учебных работ для студентов

Рейтинг-контроль 1	Устный опрос (2 вопроса)	До 10 баллов	
Рейтинг-контроль 2	Устный опрос (2 вопроса)	До 10 баллов	
Рейтинг-контроль 3	Устный опрос (2 вопроса)	До 10 баллов	
Посещение занятий студентом	Отметка в журнале посещений	До 5 баллов	
Дополнительные баллы (бонусы)		До 5 баллов	
Выполнение семестрового плана самостоятельной работы	Защита лабораторных работ	До 20 баллов	

2. Промежуточная аттестация по дисциплине Перечень вопросов к экзамену / зачету / зачету с оценкой. Перечень практических задач / заданий к экзамену / зачету / зачету с оценкой (при наличии)

Методические материалы, характеризующие процедуры оценивания

На основе типовых заданий из раздела 6.3. программным комплексом информационнообразовательного портала МИ ВлГУ формируются в автоматическом режиме тестовые задания для студентов. Программный комплекс формирует индивидуальные задания для каждого зарегистрированного в системе студента и устанавливает время прохождения тестирования. Результатом тестирования является процент правильных ответов, с учетом индивидуального семестрового рейтинга студента формируется итоговый рейтинг студента.

Максимальная сумма баллов, набираемая студентом по дисциплине равна 100.

Оценка в баллах	Оценка по шкале	Обоснование	Уровень сформированности компетенций
Более 80	«Отлично»	Содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному	Высокий уровень
66-80	«Хорошо»	Содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками	Продвинутый уровень
50-65	«Удовлетворительно»	Содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки	Пороговый уровень
Менее 50	«Неудовлетворительно»	Содержание курса не освоено, необходимые практические навыки работы не сформированы, выполненные учебные задания содержат грубые ошибки	Компетенции не сформированы

3. Задания в тестовой форме по дисциплине

Примеры заданий:

ЭТО

Процесс, состояние которого не зависит от состояния другого параллельного процесса -

+Асинхронный параллельный процесс

-Синхронный параллельный процесс

-Подчиненный параллельный процесс

Интервал варьирования фактора - это ...

- +некоторое число, прибавление которого к нулевому уровню дает верхний уровень, а вычитание нижний
 - -разница между верхним и нижним уровнями фактора
 - -диапазон значений, которые может принимать наблюдаемый объект

Процесс, который не является подчиненным ни для одного из процессов - это

- +Независимый параллельный процесс
- -Синхронный параллельный процесс
- -Подчиненный параллельный процесс

Процесс, который создается и управляется другим процессом (более высокого уровня) - это

- -Асинхронный параллельный процесс
- -Синхронный параллельный процесс
- +Подчиненный параллельный процесс

Центр плана - это ...

+точка в факторном пространстве, соответствующая нулевым уровням всех факторов точка в факторном пространстве, рассчитанная при помощи аппроксимации всех значений факторов

-усредненное значение всех значений факторов

Модельное время - это ...

- +"искусственное" время действующее внутри моделируемой системы
- -время выполнения модельного эксперимента
- -время затраченное на описание моделируемой системы

Список, который содержит события, время наступления которых больше текущего модельного времени - это

- +Список будущих событий
- -Список прерываний
- -Список текущих событий

Список, который содержит события, связанные с возобновлением обработки прерванных транзактов - это

- -Список будущих событий
- +Список прерываний
- -Список транзактов

Список, в котором находятся события, время наступления которых меньше или равно текущему модельному времени - это

- +Список текущих событий
- -Список прерываний
- -Список прошедших событий

Множество внешних и внутренних параметров модели, значения которых исследователь может контролировать в ходе подготовки и проведения модельного эксперимента - это ...

- +факторное пространство
- -предметное пространство
- -пространство параметров

Полный перечень тестовых заданий с указанием правильных ответов, размещен в банке вопросов на информационно-образовательном портале института по ссылке https://www.mivlgu.ru/iop/question/edit.php?courseid=1927&cat=35680%2C56644&category=35657%2C56644

Оценка рассчитывается как процент правильно выполненных тестовых заданий из их общего числа.