Министерство науки и высшего образования Российской Федерации **Муромский институт (филиал)**

федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИ ВлГУ)

Кафедра ФПМ

«УТВЕРЖДАЮ»
Заместитель директора по УР
Д.Е. Андрианов
<u>16.06.2020</u>

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Теория вероятностей и математическая статистика

Направление подготовки

09.03.04 Программная инженерия

Профиль подготовки

Семестр	Трудоем- кость, час./зач. ед.	Лек- ции, час.	Практи- ческие занятия, час.	Лабора- торные работы, час.	Консуль- тация, час.	Конт- роль, час.	Всего (контак- тная работа), час.	СРС, час.	Форма промежу- точного контроля (экз., зач., зач. с оц.)
3	180 / 5	30	30		5	0,35	65,35	88	Экз.(26,65)
Итого	180 / 5	30	30		5	0,35	65,35	88	26,65

Муром, 2020 г.

1. Цель освоения дисциплины

Цели изучения дисциплины:

- ознакомление студентов с элементами математического аппарата теории вероятностей и математической статистики, необходимого для решения теоретических и практических задач

Задачи изучения дисциплины:

- формирование представления о месте и роли теории вероятностей и математической статистики в современном мире;
- формирование системы основных понятий, используемых для описания важнейших вероятностных моделей и методов.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Теория вероятностей и математическая статистика» базируется на знаниях, полученных в рамках изучения курса математики. Дисциплина «Теория вероятностей и математическая статистика» является общим теоретическим и методологическим основанием для дисциплин, входящих в ОПОП бакалавра по профилю.

3. Планируемые результаты обучения по дисциплине

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

содержание Индикатор достижения Результаты обучения по средства	Формируемые компетенции (код,	Планируемые результаты с соответствии с индикатором	Наименование оценочного	
компетенции дисциплине		-		
ОПК-1 Способен применять вания математики, необходимые для решения и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности;	ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной	ОПК-1.1 Демонстрирует знания математики, необходимые для решения задач в области профессиональной	Знать основные понятия и методы теории вероятностей и математической статистики (ОПК-1.1) Уметь применять стандартные методы и модели к решению вероятностных и статистических задач	задачи

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов.

4.1. Форма обучения: очная

Уровень базового образования: среднее общее. Срок обучения 4г.

4.1.1. Структура дисциплины

№ Раздел (тема) дисциплины		стр	пе	СТ конт вен успеваем нед							Форма текущего контроля успеваемости (по неделям
№ П\п	газдел (тема) дисциплины	Семестр	Лекции	Практические занятия	Лабораторные работы	Контрольные работы	KII / KP	Консультация	Контроль	Самостоятел	семестра), форма промежуточной аттестации(по семестрам)
1	Случайные события	3	10	12						29	Решение заданий
2	Случайные величины	3	10	14						29	Решение заданий
3	Математическая статистика	3	10	4						30	Решение заданий
Всего за семестр		180	30	30	·			5	0,35	88	Экз.(26,65)
Итог	0	180	30	30				5	0,35	88	26,65

4.1.2. Содержание дисциплины 4.1.2.1. Перечень лекций

Семестр 3

Раздел 1. Случайные события

Лекция 1.

Случайные события: предмет теории вероятностей; случайные события, их классификация (2 часа).

Лекция 2.

Действия над событиями. Алгебра событий (теоретико-множественная трактовка); свойства статистической устойчивости относительной частоты события; статистическое определение вероятности (2 часа).

Лекция 3.

Классическое определение вероятности; элементы комбинаторики; примеры вычисления вероятностей; геометрическое определение вероятности; аксиоматическое определение вероятности; свойства вероятностей; конечное вероятностное пространство; условные вероятности; вероятность произведения событий. Независимость событий; вероятность суммы событий; формула полной вероятности; формула Байеса. (теорема гипотез); независимые испытания. Схема Бернулли (2 часа).

Лекция 4.

Формула полной вероятности. Формулы Бейеса (2 часа).

Лекция 5.

Повторение испытаний. Формула Бернулли. Локальная и интегральная теорема Лапласа. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях (2 часа).

Раздел 2. Случайные величины

Лекция 6.

Виды случайных величин. Задание дискретной случайной величины. Числовые характеристики ДСВ: Математическое ожидание, дисперсия, среднее квадратическое отклонение (2 часа).

Лекция 7.

Интегральная функция распределения вероятностей случайной величины. НСВ. Плотность распределения НСВ. Числовые характеристики (2 часа).

Лекция 8.

Числовые характеристики HCB. Основные законы распределения HCB (2 часа). **Лекция 9.**

Системы случайных величин: понятие о системах случайных величин и законе их распределения, функция распределения двумерной случайной величины и её свойства; плотность распределения вероятностей двумерной случайной величины и её свойства; зависимость и независимость двух случайных величин; условные законы распределения; числовые характеристики двумерной случайной величины. Математическое ожидание и дисперсия; корреляционный момент, коэффициент корреляции; двумерное нормальное распределение; регрессия (2 часа).

Лекция 10.

Функции случайных величин: функция одного случайного аргумента; функция двух случайных аргументов; распределение функций нормальных случайных величин. Предельные теоремы вероятностей: неравенство Чебышева. Теорема Чебышева; теорема Бернулли; центральная предельная теорема; интегральная теорема Муавра — Лапласа (2 часа). Раздел 3. Математическая статистика

Лекция 11.

Задачи математической статистики. Выборочный метод. Генеральная и выборочная совокупности. Повторная и бесповторная выборки. Репрезентативная выборка. Способы отбора. Статистическое распределение выборки. Эмпирическая функция распределения. Полигон и гистограмма (2 часа).

Лекция 12.

Статистические оценки параметров распределения. Несмещённые, эффективные и состоятельные оценки. Генеральная средняя. Выборочная средняя. Оценка генеральной средней по выборочной средней. Генеральная дисперсия. Формула для вычисления дисперсии. Оценка генеральной дисперсии по исправленной выборочной. Точность оценки, доверительная вероятность. Доверительный интервал. Доверительный интервал для оценки математического ожидания при известном и неизвестном среднем квадратическом отклонении (2 часа).

Лекция 13.

Доверительные интервалы для оценки среднего квадратического отклонения нормально-го распределения (2 часа).

Лекция 14.

Оценка точности измерений. Оценка вероятности по относительной частоте (2 часа). **Лекция 15.**

Метод моментов для точной оценки параметров распределения. Метод наибольшего правдоподобия (2 часа).

4.1.2.2. Перечень практических занятий

Семестр 3

Раздел 1. Случайные события

Практическое занятие 1

Случайные события, Алгебра событий (2 часа).

Практическое занятие 2

Классическое определение вероятности; элементы комбинаторики; примеры вычисления вероятностей (2 часа).

Практическое занятие 3

Геометрическое определение вероятности; аксиоматическое определение вероятности (2 часа).

Практическое занятие 4

свойства вероятностей, условные вероятности; вероятность произведения событий. Независимость событий; вероятность суммы событий, Схема Бернулли (2 часа).

Практическое занятие 5

Формула полной вероятности. Формулы Бейеса (2 часа).

Практическое занятие 6

Повторение испытаний. Формула Бернулли. Локальная и интегральная теорема Лапласа. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях (2 часа).

Раздел 2. Случайные величины

Практическое занятие 7

Виды случайных величин. Задание дискретной случайной величины. Числовые характеристики ДСВ: Математическое ожидание, дисперсия, среднее квадратическое отклонение (2 часа).

Практическое занятие 8

Интегральная функция распределения вероятностей случайной величины. HCB. Плотность распределения HCB (2 часа).

Практическое занятие 9

Числовые характеристики НСВ (2 часа).

Практическое занятие 10

Основные законы распределения НСВ (2 часа).

Практическое занятие 11

Системы случайных величин: понятие о системах случайных величин и законе их распределения, функция распределения двумерной случайной величины и её свойства; плотность распределения вероятностей двумерной случайной величины и её свойства; зависимость и независимость двух случайных величин; условные законы распределения; числовые характеристики двумерной случайной величины. Математическое ожидание и дисперсия; корреляционный момент, коэффициент корреляции; двумерное нормальное распределение; регрессия (2 часа).

Практическое занятие 12

Функции случайных величин: функция одного случайного аргумента; функция двух случайных аргументов; распределение функций нормальных случайных величин (2 часа).

Практическое занятие 13

Предельные теоремы вероятностей: неравенство Чебышева. Теорема Чебышева; теорема Бернулли; центральная предельная теорема; интегральная теорема Муавра – Лапласа (2 часа).

Раздел 3. Математическая статистика

Практическое занятие 14

Задачи математической статистики. Выборочный метод. Генеральная и выборочная совокупности. Повторная и бесповторная выборки. Репрезентативная выборка. Способы отбора. Статистическое распределение выборки. Эмпирическая функция распределения. Полигон и гистограмма (2 часа).

Практическое занятие 15

Статистические оценки параметров распределения. Несмещённые, эффективные и состоятельные оценки. Генеральная средняя. Выборочная средняя. Оценка генеральной средней по выборочной средней. Генеральная дисперсия. Формула для вычисления дисперсии. Оценка генеральной дисперсии по исправленной выборочной. Точность оценки, доверительная вероятность. Доверительный интервал. Доверительный интервал для оценки математического ожидания при известном и неизвестном среднем квадратическом отклонении (2 часа).

4.1.2.3. Перечень лабораторных работ

Не планируется.

4.1.2.4. Перечень тем и учебно-методическое обеспечение самостоятельной работы

Перечень тем, вынесенных на самостоятельное изучение:

- 1. Основные понятия теории вероятностей. Достоверные, невозможные, случайные события.
- 2. Комбинаторика. Основные формулы комбинаторики.
- 3. Классическое определение вероятности. Свойства вероятности.
- 4. Сложение вероятностей. Противоположные случайные события.
- 5. Умножение вероятностей независимых событий. Вероятность появления хотя бы одного события.
- 6. Зависимые события. Условная вероятность. Теорема умножения вероятностей.
- 7. Формула полной вероятности. Вероятность гипотез.
- 8. Повторение испытаний. Формула Бернулли.
- 9. Редкие явления. Формула Пуассона.
- 10. Приближенные формулы в схеме Бернулли.
- 11. Локальная и интегральная теоремы Лапласа.
- 12. Дискретная случайная величина. Способы задания.
- 13. Закон распределения вероятностей дискретной случайной величины.
- 14. Числовые характеристики дискретной случайной величины.
- 15. Функция распределения вероятностей случайной величины.
- 16. Непрерывная случайная величина.
- 17. Плотность распределения непрерывной случайной величины.
- 18. Вероятность попадания случайной величины в заданный интервал.
- 19. Числовые характеристики непрерывных случайных величин.
- 20. Важнейшие распределения случайных величин (дискретные и непрерывные распределения).
- 21. Предельные теоремы теории вероятностей.
- 22. Задачи математической статистики. Основные понятия.
- 23. Статистическое распределение выборки.
- 24. Эмпирическая функция распределения.
- 25. Полигон и гистограмма.
- 26. Точечные оценки параметров распределения.
- 27. Интервальные оценки распределения.
- 28. Надёжность и точность оценок.

Для самостоятельной работы используются методические указания по освоению дисциплины и издания из списка приведенной ниже основной и дополнительной литературы.

4.1.2.5. Перечень тем контрольных работ, рефератов, ТР, РГР, РПР Не планируется.

4.1.2.6. Примерный перечень тем курсовых работ (проектов) Не планируется.

4.2 Форма обучения: заочная

Уровень базового образования: среднее общее. Срок обучения 5л.

Семестр	Трудоем- кость, час./ зач. ед.	Лек- ции, час.	Практи- ческие занятия, час.	Лабора- торные работы, час.	Консуль- тация, час.	Конт- роль,час.	Всего (контак- тная работа), час.	СРС, час.	Форма промежуточного контроля (экз., зач., зач. с оц.)
3	180 / 5	4	4		2	0,6	10,6	160,75	Экз.(8,65)
Итого	180 / 5	4	4		2	0,6	10,6	160,75	8,65

4.2.1. Структура дисциплины

№	№ Раздел (тема)				энтак эбуча гичес	ющи	іхся (c	ОМ	Самостоятельная работа	Форма текущего контроля успеваемости (по неделям
п/п	дисциплины	Семестр	Лекции	Практические занятия	Лабораторные работы	Контрольные работы	KII / KP	Консультация	Контроль	Самостоятел	семестра), форма промежуточной аттестации(по семестрам)
1	Случайные события. Случайные величины	3	2	2						130	Решение заданий
2	Математическая	3	2	2						30,75	Решение
	статистика									ŕ	заданий
Всего за семестр		180	4	4		+		2	0,6	160,75	Экз.(8,65)
Ито	0	180	4	4				2	0,6	160,75	8,65

4.2.2. Содержание дисциплины 4.2.2.1. Перечень лекций

Семестр 3

Раздел 1. Случайные события. Случайные величины

Лекция 1.

Классическое определение вероятности;Повторение испытаний. Формула Бернулли. Локальная и интегральная теорема Лапласа. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях.Виды случайных величин. Задание дискретной случайной величины. Числовые характеристики ДСВ: Математическое ожидание, дисперсия, среднее квадратическое отклонение (2 часа).

Раздел 2. Математическая статистика

Лекция 2.

Задачи математической статистики. Статистическое распределение выборки. Эмпирическая функция распределения. Полигон и гистограмма (2 часа).

4.2.2.2. Перечень практических занятий

Семестр 3

Раздел 1. Случайные события. Случайные величины

Практическое занятие 1.

Классическое определение вероятности;Повторение испытаний. Формула Бернулли. Локальная и интегральная теорема Лапласа. Вероятность отклонения относительной частоты от постоянной вероятности в независимых испытаниях.Виды случайных величин. Задание дискретной случайной величины. Числовые характеристики ДСВ: Математическое ожидание, дисперсия, среднее квадратическое отклонение (2 часа).

Раздел 2. Математическая статистика

Практическое занятие 2.

Задачи математической статистики. Статистическое распределение выборки. Эмпирическая функция распределения. Полигон и гистограмма (2 часа).

4.2.2.3. Перечень лабораторных работ

Не планируется.

4.2.2.4. Перечень тем и учебно-методическое обеспечение самостоятельной работы

Перечень тем, вынесенных на самостоятельное изучение:

- 1. Основные понятия теории вероятностей. Достоверные, невозможные, случайные события.
 - 2. Комбинаторика. Основные формулы комбинаторики.
 - 3. Классическое определение вероятности. Свойства вероятности.
 - 4. Сложение вероятностей. Противоположные случайные события.
- 5. Умножение вероятностей независимых событий. Вероятность появления хотя бы одного события.
 - 6. Зависимые события. Условная вероятность. Теорема умножения вероятностей.
 - 7. Формула полной вероятности. Вероятность гипотез.
 - 8. Повторение испытаний. Формула Бернулли.
 - 9. Редкие явления. Формула Пуассона.
 - 10. Приближенные формулы в схеме Бернулли.
 - 11. Локальная и интегральная теоремы Лапласа.
 - 12. Дискретная случайная величина. Способы задания.
 - 13. Закон распределения вероятностей дискретной случайной величины.
 - 14. Числовые характеристики дискретной случайной величины.
 - 15. Функция распределения вероятностей случайной величины.
 - 16. Непрерывная случайная величина.
 - 17. Плотность распределения непрерывной случайной величины.
 - 18. Вероятность попадания случайной величины в заданный интервал.
 - 19. Числовые характеристики непрерывных случайных величин.
- 20. Важнейшие распределения случайных величин (дискретные и непрерывные распределения).
 - 21. Предельные теоремы теории вероятностей.
 - 22. Задачи математической статистики. Основные понятия.
 - 23. Статистическое распределение выборки.
 - 24. Эмпирическая функция распределения.
 - 25. Полигон и гистограмма.
 - 26. Точечные оценки параметров распределения.

- 27. Интервальные оценки распределения.
- 28. Надёжность и точность оценок.

Для самостоятельной работы используются методические указания по освоению дисциплины и издания из списка приведенной ниже основной и дополнительной литературы.

4.2.2.5. Перечень тем контрольных работ, рефератов, ТР, РГР, РПР

- 1. Основные понятия теории вероятностей. Достоверные, невозможные, случайные события.
 - 2. Комбинаторика. Основные формулы комбинаторики.
 - 3. Классическое определение вероятности. Свойства вероятности.
 - 4. Сложение вероятностей. Противоположные случайные события.
- 5. Умножение вероятностей независимых событий. Вероятность появления хотя бы одного события.
 - 6. Зависимые события. Условная вероятность. Теорема умножения вероятностей.
 - 7. Формула полной вероятности. Вероятность гипотез.
 - 8. Повторение испытаний. Формула Бернулли.
 - 9. Редкие явления. Формула Пуассона.
 - 10. Приближенные формулы в схеме Бернулли.
 - 11. Локальная и интегральная теоремы Лапласа.
 - 12. Дискретная случайная величина. Способы задания.
 - 13. Закон распределения вероятностей дискретной случайной величины.
 - 14. Числовые характеристики дискретной случайной величины.
 - 15. Функция распределения вероятностей случайной величины.
 - 16. Непрерывная случайная величина.
 - 17. Плотность распределения непрерывной случайной величины.
 - 18. Вероятность попадания случайной величины в заданный интервал.
 - 19. Числовые характеристики непрерывных случайных величин.
- 20. Важнейшие распределения случайных величин (дискретные и непрерывные распределения).
 - 21. Предельные теоремы теории вероятностей.
 - 22. Задачи математической статистики. Основные понятия.
 - 23. Статистическое распределение выборки.
 - 24. Эмпирическая функция распределения.
 - 25. Полигон и гистограмма.
 - 26. Точечные оценки параметров распределения.
 - 27. Интервальные оценки распределения.
 - 28. Надёжность и точность оценок.

4.2.2.6. Примерный перечень тем курсовых работ (проектов)

Не планируется.

5. Образовательные технологии

В процессе изучения дисциплины "Теория вероятностей и математическая статистика" применяются классические лекционные образовательные технологии, на практиках применяются индивидуальные и групповые технологии преподавания. Преподавателем обозначается проблема, которые затем обсуждается, решается. Результат и ход решения демонстрируются с использованием мультимедийной техники. Используется также самостоятельное решение учащимися типовых задач и примеров.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Фонды оценочных материалов (средств) приведены в приложении.

7. Учебно-методическое и информационное обеспечение дисциплины.

7.1. Основная учебно-методическая литература по дисциплине

- 1. Терновая, Г. Н. Теория вероятностей и математическая статистика в примерах : электронное учебное пособие / Г. Н. Терновая. Астрахань : Астраханский государственный архитектурно-строительный университет, ЭБС АСВ, 2019. 92 с. ISBN 978-5-93026-070-0. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/93094.html
- 2. Калинина В.Н., Панкин В.Ф. Теория вероятностей и математическая статистика. М.: Высшая школа, 1998. 336 с.Зенков, А. В. Математическая статистика в задачах и упражнениях: учебное пособие / А. В. Зенков. Москва, Вологда: Инфра-Инженерия, 2022. 108 с. ISBN 978-5-9729-0866-0. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/124187.html https://www.iprbookshop.ru/124187.html
- 3. Царькова, Е. В. Теория вероятностей и математическая статистика. Ч.1. Теория вероятностей: учебное пособие / Е. В. Царькова. Москва: Российский государственный университет правосудия, 2022. 152 с. ISBN 978-5-93916-973-8. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/122916.html

7.2. Дополнительная учебно-методическая литература по дисциплине

- 1. Акчурина, Л. В. Теория вероятностей и математическая статистика: учебное пособие / Л. В. Акчурина, А. Б. Кущев, С. С. Сумера. Воронеж: Воронежский государственный технический Акчурина, Л. В. Теория вероятностей и математическая статистика: учебное пособие / Л. В. Акчурина, А. Б. Кущев, С. С. Сумера. Воронеж: Воронежский государственный технический университет, ЭБС АСВ, 2022. 124 с. ISBN 978-5-7731-1040-8. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/125973.html
- 2. Карпенко, Н. В. Математическая статистика. Ч.3: учебное пособие / Н. В. Карпенко. Москва: Российский университет транспорта (МИИТ), 2021. 63 с. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/122053.html

7.3. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

- В образовательном процессе используются информационные технологии, реализованные на основе информационно-образовательного портала института (www.mivlgu.ru/iop), и инфокоммуникационной сети института:
 - предоставление учебно-методических материалов в электронном виде;
- взаимодействие участников образовательного процесса через локальную сеть института и Интернет;
- предоставление сведений о результатах учебной деятельности в электронном личном кабинете обучающегося.

Информационные справочные системы:

Электронная библиотека ВлГУ - http://dspace.www1.vlsu.ru/

Программное обеспечение:

Не предусмотрено.

7.4. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

iprbookshop.ru dspace.www1.vlsu.ru mivlgu.ru/iop

8. Материально-техническое обеспечение дисциплины

Лекционная аудитория

Доска меловая 3-х элементная; системный блок IC 2.8; проектор мультимедийный NEC Projector V302XG; экран настенный LMP-100109; доступ к сети Интернет.

9. Методические указания по освоению дисциплины

Для успешного освоения теоретического материала обучающийся: знакомится со списком рекомендуемой основной и дополнительной литературы; уточняет у преподавателя, каким дополнительным пособиям следует отдать предпочтение; ведет конспект лекций и прорабатывает лекционный материал, пользуясь как конспектом, так и учебными пособиями.:

На практических занятиях пройденный теоретический материал подкрепляется решением задач по основным темам дисциплины. Занятия проводятся в компьютерном классе, используя специальное программное обеспечение. Каждой подгруппе обучающихся преподаватель выдает задачу, связанную с разработкой и программной реализацией алгоритмов обработки информации. В конце занятия обучающие демонстрируют полученные результаты преподавателю и при необходимости делают работу над ошибкам

Каждый обучающийся самостоятельно определяет режим своей работы и меру труда, затрачиваемого на овладение учебным содержанием дисциплины. Он выполняет внеаудиторную работу и изучение разделов, выносимых на самостоятельную работу, по личному индивидуальному плану, в зависимости от его подготовки, времени и других условий.

Форма заключительного контроля при промежуточной аттестации — экзамен. Для проведения промежуточной аттестации по дисциплине разработаны фонд оценочных средств и балльно-рейтинговая система оценки учебной деятельности студентов. Оценка по дисциплине выставляется в информационной системе и носит интегрированный характер, учитывающий результаты оценивания участия студентов в аудиторных занятиях, качества и своевременности выполнения заданий в ходе изучения дисциплины и промежуточной аттестации.

Программа составлена в соответствии с требован	ниями ФГОС	ВО по направлению
09.03.04 Программная инженерия		
Рабочую программу составил к.с.н. Смолина Н.В		
Программа рассмотрена и одобрена на заседании ка	афедры <i>ФПМ</i>	
протокол № 17 от 22.05.2020 года.		
Заведующий кафедрой ФПМОрлов	A.A.	
(Подпись)		
Рабочая программа рассмотрена и одобрена н комиссии факультета	а заседании	учебно-методической
протокол № 10 от 10.06.2020 года. Председатель комиссии ФИТР	ыжкова М.Н. (Ф.И.О.)	
(Подпись)	(Ф.И.О.)	

Фонд оценочных материалов (средств) по дисциплине

Теория вероятностей и математическая статистика

1. Оценочные материалы для проведения текущего контроля успеваемости по дисциплине

https://scala.mivlgu.ru/upload/files_opop/1348c2595e98639002fde1559473025d_167895224 2.docx

Общее распределение баллов текущего контроля по видам учебных работ для студентов

Рейтинг-контроль 1	решение заданий	до 10 баллов
Рейтинг-контроль 2	решение заданий	до 10 баллов
Рейтинг-контроль 3	решение заданий	до 15 баллов
Посещение занятий студентом		до 5 баллов
Дополнительные баллы (бонусы)		до 5 баллов
Выполнение семестрового плана самостоятельной работы		до 15 баллов

2. Промежуточная аттестация по дисциплине Перечень вопросов к экзамену / зачету / зачету с оценкой. Перечень практических задач / заданий к экзамену / зачету / зачету с оценкой (при наличии)

Методические материалы, характеризующие процедуры оценивания

На основе типовых заданий из раздела 6.3. программным комплексом информационнообразовательного портала МИ ВлГУ формируются в автоматическом режиме тестовые задания для студентов: три вопроса из блока 1, три вопроса из блока 2 и четыре вопроса из блока 3. Программный комплекс формирует индивидуальные задания для каждого зарегистрированного в системе студента и устанавливает время прохождения тестирования. Результатом тестирования является процент правильных ответов, с учетом индивидуального семестрового рейтинга студента формируется экзаменационная оценка.

Максимальная сумма баллов, набираемая студентом по дисциплине равна 100.

Оценка	Оценка по шкале	Обоснование	Уровень
В			сформированности
баллах			компетенций
Более 80	«Отлично»	Содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все	Высокий уровень
		предусмотренные программой	

		обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному	
66-80	«Хорошо»	Содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками	Продвинутый уровень
50-65	«Удовлетворительно»	Содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки	Пороговый уровень
Менее 50	«Неудовлетворительно»	Содержание курса не освоено, необходимые практические навыки работы не сформированы, выполненные учебные задания содержат грубые ошибки	Компетенции не сформированы

3. Задания в тестовой форме по дисциплине

Примеры заданий:

Игральная кость бросается один раз. Тогда вероятность того, что на верхней грани выпадет не более пяти очков, равна...

1/6

2/3

5/6

Вероятность невозможного события равна...

v

1

-1

0,0001

По мишени производится четыре выстрела. Значение вероятности промаха при первом выстреле 0,5; при втором -0,3; при третьем -0,2; при четвертом -0,1. Тогда вероятность того, что мишень будет поражена все четыре раза, равна..

0,515

0,003

0,215

0,252

Дана выборка объема п. Если каждый элемент выборки уменьшить на 4 единицы, то выборочное среднее $\mathbf{x}^{-}...$

Уменьшится на 4 единицы

Не изменится

Увеличится на 4 единицы

Уменьшится на 2 единицы

Мода вариационного ряда 2, 3, 4, 7, 8, 8, 9 равна...

2

8

7

9

Событие A может наступить ли при условии появления одного из двух несовместных событий B_1 и B_2 , образующих полную группу событий. Известны вероятность $P(B_1)=3/4$ и условные вероятности $P(A/B_1)=1/4$, $P(A/B_2)=1/2$. Тогда вероятность P(A) равна...

5/16

3/16

1/4

3/4

В результате измерений некоторой физической величины одним прибором (без систематических ошибок) получены следующие результаты (в мм): 15; 18; 21; 24. Тогда выборочная дисперсия равна..

11,25

19.5

15

21,25

При наборе телефонного номера абонент забыл две последние цифры и набрал их наудачу, помня только, что эти цифры нечетные и разные. Тогда вероятность того, что номер набран правильно, равна...

1/20

1/4

1/90

1/5

Вероятность поражения цели первым стрелком равна 0.95, а вторым -0.80. Оба стрелка стреляют одновременно. Тогда вероятность того, что цель будет поражена только одним стрелком, равна...

0,23

0,95

0,875

0,17

Проводится п независимых испытаний, в каждом из которых вероятность появления события A постоянна и равна 0,6. Тогда математическое ожидание M(X) и дисперсия D(X) дискретной случайности величины X – числа появлений события A в n=100 проведенных испытаний равна...

M(X) = 60, D(X) = 24

M(X) = 24, D(X) = 60

M(X) = 6, D(X) = 24

M(X) = 24, D(X) = 6

Проведено пять измерений (без систематических ошибок) некоторой случайной величины (в мм): $2,1;\ 2,3;\ x_3;\ 2,7;\ 2,9$. Если несмещенная оценка математического ожидания равна 2,48, то x 3 равно...

2,4

2,5

2,6

```
2,\!48 Мода вариационного ряда 2, 4, 5, 7, 7, 7, 9, 9, 11, 12 равна... 7 12 10 2
```

Полный перечень тестовых заданий с указанием правильных ответов, размещен в банке вопросов на информационно-образовательном портале института по ссылке https://www.mivlgu.ru/iop/question/edit.php?courseid=2822&category=31793%2C89948&qbshowte xt=0&recurse=1&showhidden=0

Оценка рассчитывается как процент правильно выполненных тестовых заданий из их общего числа.