Министерство науки и высшего образования Российской Федерации

Муромский институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИ ВлГУ)

Отделение среднего профессионального образования

		«УТВЕ	РЖДАЮ»
Замес	гителі	ь директ	тора по УР
		Д.Е. А	Андрианов
«	17 ×	» <u>05</u>	2022 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Элементы дискретной математики

для специальности 09.02.03 Программирование в компьютерных системах

Рабочая программа учебной дисциплины разработана на основе Федерального государственного образовательного стандарта (далее - Φ ГОС) по специальности среднего профессионального образования (далее - СПО) 09.02.03 Программирование в компьютерных системах №804 от 28 июля 2014 года.

Кафедра-разработчик: систем автоматизированного	проектирования.	
Рабочую программу составил: Мортин Константин I	Зладимирович	
(подпись)	«»(дата)	Γ.
Рабочая программа рассмотрена и одобрена на засед 5.05.2022 г. протокол №11	ании кафедры ПИн.	
Заведующий кафедрой ПИн Жизняков А.Л.	(подпись)	

СОДЕРЖАНИЕ

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	6
3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ	9
4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛІ	ИНЫ 10

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

Элементы дискретной математики

1.1. Область применения рабочей программы

Рабочая программа учебной дисциплины является частью программы подготовки специалистов среднего звена в соответствии с ФГОС по специальности 09.02.03 Программирование в компьютерных системах.

Рабочая программа учебной дисциплины может быть использована в дополнительном профессиональном образовании, для получения дополнительных компетенций, умений и знаний, необходимых для обеспечения конкурентоспособности выпускника на рынке труда и продолжения образования по специальности.

1.2. Место учебной дисциплины в структуре программы подготовки специалистов среднего звена:

Дисциплина «Дискретная математика» входят в математический и общий естественнонаучный цикл дисциплин учебного плана специальности 09.02.02

«Компьютерные сети». Компетенции, формируемые в результате освоения содержания учебной дисциплины необходимы для успешного изучения таких дисциплин учебного плана, как: «Математический аппарат для построения компьютерных сетей», «Технические средства информатизации», «Организация, принципы построения и функционирования компьютерных сетей», «Схемотехника».

1.3. Цели и задачи учебной дисциплины - требования к результатам освоения учебной дисциплины:

Рабочая программа учебной дисциплины может быть использована в дополнительном профессиональном образовании и профессиональной подготовке специалистов в области программирования в компьютерных системах

В результате освоения учебной дисциплины обучающийся должен уметь:

- представлять множества различными способами (ОК-1);
- применять различные способы доказательств тождеств (ОК-2);
- - вычислять мощности множеств для различных задач (ОК-3);
- -- применять способы представления множеств в ЭВМ (ОК-4);
- – определять свойства бинарных отношений (ОК-5);
- соотносить разбиение множества с заданным на нем отношением эквивалентности (ОК-6);
- различать максимальные и наибольший (минимальные и наименьший) элементы частично-упорядоченного множества (ОК-7);
- находить область определения (прообразы) и область значений (образы) данной функции, обратную функцию, если она существует, композицию функций (ОК-8);
- строить отношение эквивалентности, частично-упорядоченное, линейноупорядоченное отношения (ОК-9).

В результате освоения учебной дисциплины обучающийся должен знать:

- пределения подмножества, булеана множества, включения и равенства множеств, операций над множествами, декартового произведения множеств, парного и бинарного отношений, области определения и области значений бинарного отношения, композиции отношений, свойств бинарных отношений, отношения эквивалентности, отношения порядка (ОК-1);
 - – способы представления множеств (OK-2);
- определения функции, отображения, сюръективной, инъективной, биективной функций, биекции (ОК-3);

- определения n-арной операции, алгебры, типов алгебры, подалгебры, гомоморфизма, изоморфизма алгебр, полугруппы, группы, кольца, поля, тела алгебраической системы, решетки (ОК-4);
 - – свойства бинарных операций (ОК-5);
- значимость понятия гомоморфизма и изоморфизма алгебр в теории компьютерных наук (ОК-6);
 - – определения алгебры логики, основные законы алгебры логики (ОК-7);
- — цели и задачи применения различных методик и алгоритмов описания дискретных систем с помощью булевых функций (ПК 11);
 - – наименования понятий комбинаторного вычисления (ПК 12);
 - места применения комбинаторного вычисления (ПК 13);
 - – методики и алгоритмы комбинаторного вычисления (ПК 14);
 - - критерии, которые необходимо учитывать при комбинаторном анализе (ПК 15).

В результате освоения дисциплины обучающийся должен владеть следующими общими (ОК) и профессиональными (ПК) компетенциями:

- ОК-1. Понимать сущность и социальную значимость своей будущей профессии, проявлять к ней устойчивый интерес;
- ОК-2. Организовывать собственную деятельность, выбирать типовые методы и способы выполнения профессиональных задач, оценивать их эффективность и качество;
- ОК-3. Принимать решения в стандартных и нестандартных ситуациях и нести за них ответственность;
- ОК-4. Осуществлять поиск и использование информации, необходимой для эффективного выполнения профессиональных задач, профессионального и личностного развития;
- ОК-5. Использовать информационно-коммуникационные технологии в профессиональной деятельности;
- ОК-6. Работать в коллективе и в команде, эффективно общаться с коллегами, руководством, потребителями;
- ОК-7. Брать на себя ответственность за работу членов команды (подчиненных), за результат выполнения заданий;
- ОК-8. Самостоятельно определять задачи профессионального и личностного развития, заниматься самообразованием, осознанно планировать повышение квалификации;
- ОК-9. Ориентироваться в условиях частой смены технологий в профессиональной деятельности;
 - ПК 11. Выполнять разработку спецификаций отдельных компонент;
- ПК 12. Осуществлять разработку кода программного продукта на основе готовых спецификаций на уровне модуля;
- ПК 13. Выполнять отладку программных модулей с использованием специализированных программных средств;
 - ПК 14. Выполнять тестирование программных модулей;
 - ПК 15. Осуществлять оптимизацию программного кода модуля;

1.4. Количество часов на освоение программы учебной дисциплины:

Максимальной учебной нагрузки обучающегося 90 часов, в том числе: обязательной аудиторной нагрузки обучающегося 60 часов; самостоятельной нагрузки обучающегося 30 часов.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
	6 семестр
Максимальная учебная нагрузка (всего)	90
Обязательная аудиторная учебная нагрузка (всего)	60
В том числе:	
лекционные занятия	30
практические занятия	30
лабораторные работы	
контрольные работы	
курсовая работа	
Самостоятельная работа обучающегося (всего)	30
Итоговая аттестация в форме	Дифференцированный зачет

2.2. Тематический план и содержание учебной дисциплины

Наименование разделов и	Содержание учебного материала,	Объем	Уровень
тем	лабораторные работы и практические	часов	освоения
	занятия, самостоятельная работа		
	обучающихся		
1	2	3	4
	6 семестр		
Раздел 1	Теория множеств		
Тема 1.1 Множества.	Содержание учебного материала		
Теоретикомножественные	Лекционные занятия. Введение.	6	1
операции.	Предмет дискретной математики. Цели		
	и задачи курса. Роль дискретной		
	математики в подготовке техников.		
	Понятие множества. Виды множеств.		
	Способы задания множеств. Операции		
	над множествами. Свойства операций		
	над множествами. Законы теории		
	множеств и их доказательства. Свойства		
	разности.		_
	Практические занятия. Операции над	6	2
	множествами. Диаграмма Эйлера-		
	Венна. Разбиение множества на классы.		
	Решение задач на выполнение		
	теоретико-множественных операций и		
	на подсчет количества элементов с использованием формулы количества		
	элементов в объединении нескольких		
	конечных множеств. Произведение		
	множеств.		
	Самостоятельная работа	14	3
	обучающихся. Работа с конспектами,	1 1	
	учебной и специальной литературой (по		

		T T	
	параграфам, главам учебных пособий,		
	указанным преподавателем).		
	Подготовка к практическим занятиям		
	преподавателя, оформление домашних		
	работ. Построение логических		
	высказываний, Построение сложных		
	логических высказываний. Построение		
	формул булевой алгебры. Построение		
	формул, функций алгебры логики. Применение законов булевой алгебры.		
Тема 1.2 Соответствия.			
тема 1.2 Соответствия.	Содержание учебного материала	4	1
	<i>Лекционные занятия</i> . Понятие соответствия. Способы задания	4	1
	соответствия. Спосооы задания соответствия. Виды соответствий.		
	Понятие счетного множества,		
	равномощных множеств. Теорема		
	Кантора. Парадокс Кантора.		
	Кардинальные числа. Арифметика		
	кардинальных чисел.		
Тема 1.3 Понятие	Содержание учебного материала		
отображения множеств и	Лекционные занятия. Отображение и	4	1
функции. Свойства функций.	функция. Свойства функций: иньекция,	•	1
	сюрьекция и биекция. Композиция		
	функций.		
	Практические занятия. Графы.	10	2
	Способы задания графов. Степени		
	вершин. Реализация на языке С класс,		
	описывающий расчет алгоритма		
	Дейкстры. Реализация на языке С		
	класс, описывающий расчет алгоритма		
	Дейкстры. Проверка пары графов на		
	изоморфность, на эйлеровость и		
	гамильтоновость. Запись матрицы		
	Достижимости и построение диаграммы		
	Герца для орграфа. Решение задач на бинарные деревья.		
	Самостоятельная работа	8	3
	обучающихся. Работа с конспектами,	0	3
	учебной и специальной литературой (по		
	параграфам, главам учебных пособий,		
	указанным преподавателем).		
	Подготовка к практическим занятиям		
	преподавателя, оформление домашних		
	работ и подготовка их к защите.		
Тема 1.4 Предикаты и	Содержание учебного материала		
бинарные отношения	Лекционные занятия. Логика	4	1
	предикатов. Понятия отношения.		
	Бинарные отношения. Свойства		
	бинарных отношений. Упорядоченные		
	пары, отношение. Композиция		
	отношений. Степень, ядро, свойства		
)	1	
Раздел 2	отношений.		

Тема 2.1 Алгебра и	Содержание учебного материала		
алгебраические структуры	Лекционные занятия. Операции и алгебры. Морфизмы. Векторные пространства. Алгебраические структуры.	4	1
	Практические занятия. Составление таблиц истинности. Равносильные преобразования. Упрощение формул логики. Приведение формул к совершенным нормальным формам по таблицам истинности. Решение логических задач.	6	2
	Самостоятельная работа обучающихся. Работа с конспектами, учебной и специальной литературой (по параграфам, главам учебных пособий, указанным преподавателем). Подготовка к практическим занятиям преподавателя, оформление домашних работ и подготовка их к защите.	8	3
Раздел 3	Булева алгебра		
Тема 3.1 Операции булевой	Содержание учебного материала		
Тема 3.1 Операции булевой алгебры.	Лекционные занятия. Логические высказывания. Логические переменные. Элементы булевой алгебры. Операции булевой алгебры. Законы булевой	4	1
	Лекционные занятия. Логические высказывания. Логические переменные. Элементы булевой алгебры. Операции булевой алгебры. Законы булевой алгебры и их доказательства.	4	1
алгебры.	Лекционные занятия. Логические высказывания. Логические переменные. Элементы булевой алгебры. Операции булевой алгебры. Законы булевой	4	1
алгебры. Раздел 4	Пекционные занятия. Логические высказывания. Логические переменные. Элементы булевой алгебры. Операции булевой алгебры. Законы булевой алгебры и их доказательства. Элементы комбинаторики	4	1
алгебры. Раздел 4 Тема 4.1 Комбинаторные	Пекционные занятия. Логические высказывания. Логические переменные. Элементы булевой алгебры. Операции булевой алгебры. Законы булевой алгебры и их доказательства. Элементы комбинаторики Содержание учебного материала Лекционные занятия. Подсчет и комбинаторные тождества. Формула включений и исключений. Принцип		1 2

Для характеристики уровня освоения учебного материала используются следующие обозначения:

- 1. ознакомительный (узнавание новых объектов, свойств);
- 2. репродуктивный (выполнение деятельности по образцу, инструкции или под руководством);
- 3. продуктивный (планирование и самостоятельное выполнение деятельности, решение проблемных задач).

3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Требования к минимальному материально – техническому обеспечению

Полигон вычислительной техники

Компьютер Intel Core i5-2400 3,10 GHz, 4гб, DVD-R/ Philips 19'; робот со сферической системой координат РОБИН СФЕРА (РСС-1 СФЕРА); 3D принтер Magnum Creative 2 PLA; 3D сканер BP Ciclop; цифровая камера Levenhook C-Series C130; проектор NEC Projector NP-40G; микроскоп металлографический Биомед MMP; IP камера TP-Link; экран настенный проекционный Screen Media 200*210мм. Маркерная доска.

Лаборатория вычислительной техники, архитектуры персонального компьютера и периферийных устройств

Компьютер Intel Core i5-2400 3,10 GHz, 4гб, DVD-R/ Philips 19'; робот со сферической системой координат РОБИН СФЕРА (РСС-1 СФЕРА); 3D принтер Magnum Creative 2 PLA; 3D сканер BP Ciclop; цифровая камера Levenhook C-Series C130; проектор NEC Projector NP-40G; микроскоп металлографический Биомед ММР; IP камера TP-Link; экран настенный проекционный Screen Media 200*210мм. Маркерная доска.

Программное обеспечение:

LibreOffice (Mozilla Public License v2.0)

Microsoft Visio (Программа Microsoft Azure Dev Tools for Teaching (Order Number: IM126433))

Notepad++ (GNU GPL 3)

3.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, интернет – ресурсов, дополнительной литературы.

Основные источники:

- 1. Судоплатов, С.В. Дискретная математика: учебник / Е.В. Овчинникова, С.В. Судоплатов. 3-е изд., перераб. и доп. Новосибирск: Изд-во НГТУ, 2010. 256 с. (Учебники НГТУ). ISBN 978-5-7782-1327-2. Режим доступа: https://rucont.ru/efd/205778.. https://rucont.ru/efd/205778.. https://rucont.ru/efd/205778
- 2. Шмырин, А.М. Лекции по дискретной математике и математической логике : учеб. пособие / И.А. Седых, А.М. Шмырин .— Липецк : ЛГТУ, 2014 .— 163 с. ISBN 978-5-88247-714-0.. https://rucont.ru/efd/336144. https://rucont.ru/efd/336144
- 3. Кургалин, С.Д. Задачи по дискретной математике / С.В. Борзунов, С.Н. Синицина, С.Д. Кургалин .— Воронеж : Издательско-полиграфический центр Воронежского государственного университета, 2011 .— 71 с. 70 с... https://rucont.ru/efd/226838 . https://rucont.ru/efd/226838

Дополнительные источники:

1. Кузнецов О.П.. Дискретная математика для инженера : [Учеб. пособие для вузов] / О.П. Кузнецов, Изд. 3-е, перераб. и доп. - М. ; СПб. ; Краснодар : Лань, 2004. - 395 с. 30 . 20

Интернет-ресурсы:

- 1. 1. Электронная библиотечная система ibooks.ru
- 2. 2. Электронная библиотечная система iprbookshop.ru
- 3. 3. Электронная библиотека ВлГУ e.lib.vlsu.ru

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Результаты обучения (освоенные умения, усвоенные знания)	Формы и методы контроля и оценки результатов обучения
 представлять множества различными способами 	тест
 применять различные способы доказательств тождеств 	тест
 вычислять мощности множеств для различных задач 	тест
 применять способы представления множеств в ЭВМ 	тест
– определять свойства бинарных отношений	тест
— соотносить разбиение множества с заданным на нем отношением эквивалентности	тест
– различать максимальные и наибольший (минимальные и наименьший) элементы частично-упорядоченного множества	тест
— находить область определения (прообразы) и область значений (образы) данной функции, обратную функцию, если она существует, композицию функций	тест
– строить отношение эквивалентности, частично-упорядоченное, линейноупорядоченное отношения	тест
– определения подмножества, булеана множества, включения и равенства множеств, операций над множествами, декартового произведения множеств, парного и бинарного отношений, области определения и области значений бинарного отношения, композиции отношений, свойств бинарных отношений, отношения эквивалентности, отношения порядка	тест
 способы представления множеств 	тест
 определения функции, отображения, сюръективной, инъективной, биективной функций, биекции 	тест
определения п-арной операции, алгебры, типов алгебры, подалгебры, гомоморфизма, изоморфизма алгебр, полугруппы, группы, кольца, поля, тела алгебраической системы, решетки	тест
 свойства бинарных операций 	тест
— значимость понятия гомоморфизма и изоморфизма алгебр в теории компьютерных наук	тест
 определения алгебры логики, основные законы алгебры логики 	тест
 цели и задачи применения различных методик и алгоритмов описания дискретных систем с помощью булевых функций 	тест
 наименования понятий комбинаторного вычисления 	тест
места применения комбинаторного вычисления	тест
 методики и алгоритмы комбинаторного вычисления 	тест
 критерии, которые необходимо учитывать при комбинаторном анализе 	тест

	_	критерии, которые неооходимо учитывать при комоинаторном	тест
	анали	Be .	
F	Рецензе:	нт (эксперт):	
_		(место работы, занимаемая должность)	

Фонд оценочных материалов (средств) по дисциплине

Элементы дискретной математики

1. Оценочные материалы для проведения текущего контроля успеваемости по диспиплине

Столбен 1

- 1. Если число элементов множества конечно, множество называют...
- 2.Утверждение, о котором можно говорить, что оно истинно или ложно-...
- 3. Значения функции можно задать с помощью ..., которая показывает, чему равна функция на всех возможных комбинациях значений её переменных.
 - 4. Функция f(x (1,...,x n)) принадлежит классу T0, если ...
- 5. Произвольная функция переменной x, определенная на множестве M и принимающая значения на множестве {0(ложно);1(истинно)} называется... Столбец 2

A
$$.f(0,...,0)=0.$$

Б.
$$f(1,...,1)=1$$
.

В.Конечным

Г. Бесконечным

Д. Высказывание

Е. Элементарное высказывание

Ж.Таблица истинности

- 3. Таблица равносильности
- И. Одноместный предикат

К. Двухместный предикат

Инструкция по выполнению заданий№2-23: выберите букву, соответствующую правильному варианту ответа, и запишите её в бланк ответов.

2. Выбрать множество C, если $A=\{1;2;3\}; B=\{2;3;4;\}; C=\{1;2;3;4\}$

a)B\A

б)А∖В

г)AUB

в)А∩В

3. Найти: $|A \cup B|$ если |A|=10 |B|=7 $|A \cap B|$ =3

a)14

б)22 в)19

r)18

4. А={1;2} В={2;3}, Найти:ВхА

a) $\{(2;1);(2;2);(3;1);(3;2)\}$

```
б) {(1;2);(1;1);(2;1);(2;2)}
в) {(1;2);(1;3);(2;2);(2;3)}
г) {(2;3);(2;2);(3;2);(3;3)}
5. Выбрать формулу для вычисления Р п
a) n!/(n-m)!m!
б) n^m
в) n!/(n-m)!
г)n!
6. Вычислить: (C_7^6)<sup>-</sup>
a) 924
б) 7
в) 792
г) 15
7. Найти сумму бинарных коэффициентов разложения [(а + в)] ^6
a) 256
б) 512
в) 64
г) 128
8.Сколько анаграмм можно составить из слова "мама"
a) 6
б) 360
в) 60
r) 12
9. Выбрать операцию алгебры логики, задаваемую таблицей истинности
       b
a
              c
1
       1
              1
1
       0
              0
0
       1
              1
       0
              1
a) c=a b
б) c=a b
B) c=a b
\Gamma) c=a b
```

10. Выбрать правило исключения альтернативной дизьюнкцииа b

- a) ab ab
- б) a b ab
- в) a b
- г)⁻а b

11. Выбрать логическую операцию, которая выражена через многочлен Жегалкина: х 1

- a) x y
- б)х у
- в) x y
- Γ) X

12. Представить в виде многочлена Жегалкина ху

- a) xy x 1
- б)х у
- в) xy 1
- г) ху х

13. Логическая функция задана таблицей истинности. Найти для нее КНФ

- X y f(x:y)
- 1 1 1
- 1 0 0
- 0 1 0
- 0 0 1

- 6) $(x^{-}y)(x y)$
- $B) (x y)(\bar{x} y)$
- Γ) (x y)(x y)

14. Логическая функция задана таблицей истинности. Найти для нее ДНФ

- X y f(x:y)
- 1 1 1
- 0 1 0
- 0 0 1
- 0 0 1
- a) xy xy
- б) xy x⁻y
- в) xy ⁻ху
- г) ⁻ху

15. Построить функцию, двойственную данной:

a) ⁻ a
б)
в)
Γ (a \Longrightarrow b)
16. К какому из классов Поста принадлежит функция

- a) T0
- б) Т1
- в) S
- г) ни к какому
- 17. В неориентированном графе последовательность ребер, в которой два соседних ребра имеют общую вершину, называется:
 - а) простой цепью
 - б) цепью
 - в) циклический маршрут
 - г) маршрут
 - 18.Связный неориентированный граф, не содержащий циклов, петель и кратных ребер:
 - а) плоский граф
 - б) дерево
 - в) лес
 - г) полный граф

Общее распределение баллов текущего контроля по видам учебных работ для студентов

Рейтинг-контроль 1	Тест	20
Рейтинг-контроль 2	Тест	20
Рейтинг-контроль 3	Тест	20
Посещение занятий студентом		10
Дополнительные баллы (бонусы)	Тест	10
Выполнение семестрового плана самостоятельной работы	Тест	20

2. Промежуточная аттестация по дисциплине

Перечень вопросов к экзамену / зачету / зачету с оценкой. Перечень практических задач / заданий к экзамену / зачету / зачету с оценкой (при наличии)

- 1. Два множества называют..., если они состоят из одних и тех же элементов или являются пустыми множествами.
- 2. Значение функции можно задать с помощью . . . , которая показывает, чему равна функция на всех возможных комбинациях значений её переменных.
 - 3. Функция f(x (1,...,x n)) принадлежит классу T1, если ...
 - 4. Операция приписывания к предикату квантора называется . . .
- 5. Задачи, в которых необходимо подсчитать, сколькими способами можно осуществить то или иное требование, выполнить какое-либо условие, сделать тот или иной выбор, называются... Столбец 2

```
А. Комбинаторные;
```

```
Б. f(0,...,0)=0;
```

В.Навешиванием квантора;

```
\Gamma.f(1,...,1)=1;
```

- Д. Приписыванием квантора;
- Е. Рефлексивные;
- Ж. Таблицы истинности;
- 3. Равными;
- И.Формулы истинности;
- К. Одинаковыми.

Инструкция по выполнению заданий № 2 -23: выберите букву, соответствующую правильному варианту ответа, и запишите её в бланк ответов.

```
2. Выбрать множество C, если A={1;2;3}; B={2;3;4;}; C={2;3} a)B\A
```

б) $A \setminus B$ в) $A \cap B$

г)AUB

3. Найти: |А∪В|если |А|=16|В|=8|А∩В|=5

```
a)14
```

б)22

в)19

г)18

4. A={1;2} B={2;3}, Найти: AxB

```
a) \{(2;1);(2;2);(3;1);(3;2)\}
```

б) {(1;2);(1;1);(2;1);(2;2)}

```
г) {(2;3);(2;2);(3;2);(3;3)}
```

- в) {(1;2);(1;3);(2;2);(2;3)}
- 5. Выбрать формулу для вычисления С n^m

```
a) n!/(n-m)!m!
```

- б) n^m
- B) n!/(n-m)!

г)n!

6. Вычислить: (C_5^2)

- a)924
- б)7
- в)792
- г)15

7. Найти сумму бинарных коэффициентов разложения [(а + в)] ^9

- a) 256
- б) 512
- в) 64
- г) 128

8.Сколько анаграмм можно составить из слова "жара"

- a) 6
- б) 360
- в) 60
- г) 12

9.Выбрать операцию алгебры логики, задаваемую таблицей истинности

- a b c 1 1 1 1 1 0 0

- a) c=a b
- б) c=a b
- B) c=a b
- Γ) c=a b

10. Выбрать правило исключения эквиваленции а b

- a) ab ab
- б) a⁻b ab
- в) a b
- г)⁻а b

11. Выбрать логическую операцию, которая выражена через многочлен Жегалкина: ху х

```
б)х у
в) x у
\Gamma)x
12. Представить в виде многочлена Жегалкина (x Vy)
a) xy x 1
б)х у
в) xy 1
г) ху х
13. Логическая функция задана таблицей истинности. Найти для нее {\rm KH}\Phi
               f(x:y)
X
       y
1
       1
               1
1
       0
               0
0
       1
               0
0
       0
               1
a)(\bar{x}y)(\bar{x}y)(\bar{x}y)
6(x^{-}y)(x y)
B(x y)(x y)
\Gamma)(x y)(x y)
14. Логическая функция задана таблицей истинности. Найти для нее ДНФ
               f(x:y)
X
       y
1
       1
               1
1
       0
               1
0
       1
               0
       0
               0
0
a) xy xy
б) xy x<sup>-</sup>y
в) xy <sup>-</sup>xy
г) <sup>-</sup>ху
```

- 15. Построить функцию, двойственную данной:
- a) ⁻a;
- б);
- B);
- Γ) $(a \Longrightarrow b)$.
- 16. К какому из классов Поста принадлежит функция
- a) P0;
- б) Р1;

в) S г) ні	; и к как	юму.			
а) пр	остой	утом, в цепью;		ом кажд	ое ребро встречается не более одного раза, называется:
в) ці	епью; икличе аршру	еский м т.	аршру [,]	T;	
18.H	есвязн	ый нео	риенти	рованні	ый граф, не содержащий циклов, петель и кратных рёбер:
б) до в) ло		граф; і граф.			
19. H	Іайти і	граф, со	ответс	твующи	ий матрице смежности
٨	A	B 0 0	C 1		
В	0	0	1		
C 20.	1	1	0		
Найт	ти зада	ание да	инного 1	графа м	атрицей смежности (первая вершина і; вторая –j).
a)	2	4	E		
a) ij 3	3	4 0	5 0	6 1	
4	0	0	0	1	
5 6	0 1	0 1	$0 \\ 0$	0	
б)	1	1	U	U	
ij	3	4	5	6	
3 4	0 1	0 0	$0 \\ 0$	0	
5	1	1	0	0	
6	1	1	1	0	
в) ij	3	4	5	6	

3	0	1	1	1
4	0	0	1	1
3 4 5 6	0	0	0	1
6	0	0	0	0
г)				
ij	3	4	5	6
3	0	0	0	0
4	0	0	0	0
Γ)ij3456	0	0	0	0
				0

21. Какие из данных графов являются эйлеровыми графами:

- a)1;4;
- б)1;2;
- в) 3;4;
- г)3.

22. Метод перебора, исчерпывающий все возможности:

- а) неполная индукция;
- б) индукция;
- в) принцип математической индукции;
- г) полная индукция.

23. Сколько подмножеств имеет множество, содержащее 8 элементов?

- a) 256;
- б) 128;
- в) 64;
- г) 512.

Блок Б

- 1. Построить таблицу истинности: $(x \rightarrow y)$ $\overline{s}(x \lor y)$
- 2. Построить полином Жегалкина для функции f(x,y,z)=(10101001)

Условия выполнения задания:

Расходные материалы:

- бланк ответа (Приложение 1)

Оборудование:

- ручка

Эталон выполнения задания

Номер группы Д2ПО1 Фамилия, имя Сидоров Петр Иванович Уч. дисциплина Вариант № 1 Дата 27.06.2016 г.

№ зад	цания	Вариант ответа		ета	№ задаг	кин	Вариант ответа
Блок	A						
1	В,Д,Ж	Х,Α,И	14	A			
2	Γ	15	Б				
3	A	16	Γ				
4	A	17	Γ				
5	Γ	18	Б				
6	A	19	В				
7	В	20	A				
8	A	21	В				
9	Γ	22	В				
10	Б	23	В				
11	Γ						
12	В						
13	Γ						
Блок	Б						
24							
25							

Сумма баллов: 27

Эталон выполнения задания

Номер группы Д2ПО1

Фамилия, имя Сидоров Петр Иванович Уч. дисциплина Дискретная математика

Вариант № 2 Дата 27.06.2016 г.

№ за	дания	Вариант ответа		вета	№ задания	Вариант ответа
Блок	A					
1	З.Ж.І	B.A	14	Б		
2	В	15	В			
3	В	16	Б			
4	В	17	Б			
5	A	18	В			
6	Γ	19	A			
7	Б	20	В			
8	Γ	21	Γ			
9	В	22	Б			
10	Б	23	A			
11	Б					
12	A					
13	Б					
Блок	Б					
24						
25						

Сумма баллов:27

Критерии оценки сформированности знаний:

основные понятия и приемы дискретной математики;

логические операции, формулы логики, законы алгебры логики;

основные классы функций, полнота множества, теорема Поста;

основные понятия теории множеств, теоретико-множественны операции их связь с логическими операциями;

логика предикатов, бинарные отношения и их виды; элементы теории отображений и алгебры подстановок;

метод математической индукции; алгоритмическое перечисление основных комбинаторных объектов;

основные понятия теории графов, характеристики и виды графов; элементы теории автоматов.

Оценка тестирования

Каждый правильный ответ блока A оценивается 1 баллом, неправильный -0 баллов (всего 23 балла)

Каждый правильный ответ блока \mathbf{F} оценивается \mathbf{F} баллами, неправильный \mathbf{F} баллов (всего 4 баллов)

Максимальный балл работы по тесту составляет 27 баллов

3.2. Практическое задание для оценки сформированности умений:

формулировать задачи логического характера и применять средства математической логики для их решения;

применять законы алгебры логики; определять типы графов и давать их характеристики; строить простейшие автоматы.

Задание 2

1 вариант

Владимир, Роман, Андрей и Сергей заняли на математической олимпиаде четыре первых места. На вопрос о распределении мест были получены следующие ответы: 1) Роман – первый, Сергей – второй; 2) Роман – второй, Владимир – третий; 3) Андрей – второй, Владимир – четвертый. В каждом из ответов только одно утверждение истинно. Определить, как распределились места.

2 вариант

С помощью формул логики высказываний докажите справедливость тождества $((a\downarrow b)V(\bar{a}\leftrightarrow b))-((c-d)\downarrow(c\leftrightarrow d))=((\bar{a}\to d)\Lambda(\bar{d}\to b))\to \to ((c\to a)/(c\to b))$

Условия выполнения задания:

Расходные материалы

лист задания. Оборудование ручка

Эталоны выполнения заданий

1 вариант

Обозначим простые высказывания через X_y , где X – первая буква имени участника, а у – номер занятого места. Тогда высказывания ребят можно записать следующим образом: 1) P_1VC_2 ; 2) $P_2V \to 3$; 3) A $2VB_4$.

Так как все дизьюнкции истинны, то истинной будет и конъюнкция этих дизьюнкций, т.е. $1=(P\ 1\lor\ C_2)(P_2\lor\ B_3)(A_2\lor\ B_4)$.

Раскроем скобки: (P_1 P_(2)VC_2 P_2VP_1 B_3VC_2 B_3)(A_2V B_4).

Т.к. P_1 P_2=0(Роман не мог одновременно занять два места), а C_2 P_2=0 (Роман и Сергей не могли быть оба на втором месте), то

 $(P_1\ B_3 \lor C_2\ B_3\)(A_2 \lor B_4\)=P_1\ B_3\ A_2 \lor C_2\ B_3\ A_2 \lor P_1\ B_3\ B_4 \lor C_2\ B_3\ B_4=P_1\ B_3\ A_2 \lor 0 \lor 0=P_1\ B_3\ A_2=1,$ т.е. Роман — первый, Андрей — второй, Владимир — третий. Тогда Сергей — четвертый.

2 вариант

а) Преобразуем левую часть выражения

 $((a \downarrow b) \lor (\neg a \leftrightarrow b)) - ((c - d) \downarrow (c \leftrightarrow d)) = = \neg (((a \downarrow b) \lor (\neg a \leftrightarrow b)) \rightarrow ((c - d) \downarrow (c \leftrightarrow d))) = \neg (\neg ((a \downarrow b) \lor (\neg a \leftrightarrow b)) \land ((c - d) \lor (c \leftrightarrow d)) = \neg (\neg (a \lor b) \lor (\neg a \leftrightarrow b)) \land ((c - d) \lor (c \leftrightarrow d)) = \neg (\neg (a \lor b) \lor (\neg a \leftrightarrow b)) \land ((c - d) \lor (c \leftrightarrow d)) = \neg (\neg (a \lor b) \lor (\neg (a \lor b)) \land ((c - d) \lor (c \leftrightarrow d)) = \neg (\neg (a \lor b)) \land (c \lor (a \lor b))$

б) Преобразуем правую часть выражения

 $((\stackrel{-}{a}\rightarrow d)\Lambda(\stackrel{-}{d}\rightarrow b))\rightarrow ((c\rightarrow a)/(c\rightarrow b))=(-(\stackrel{-}{a}\rightarrow d)\Lambda(\stackrel{-}{d}\rightarrow b))\vee(-(c\rightarrow a)\Lambda) (c\rightarrow b))=(-(\stackrel{-}{a}\rightarrow d)\Lambda(\stackrel{-}{d}\rightarrow b))\vee(-(\stackrel{-}{c}\rightarrow d)\Lambda(\stackrel{-}{d}\rightarrow d))\vee(-(\stackrel{-}{c}\rightarrow d)\Lambda(\stackrel{-}{d}\rightarrow d))\vee(-(\stackrel{-}{c}\rightarrow d)\Lambda(\stackrel{-}{d}\rightarrow d))\vee(-(\stackrel{-}{d}\rightarrow d))\vee(-(\stackrel{-}{c}\rightarrow d)\Lambda(\stackrel{-}{d}\rightarrow d))\vee(-(\stackrel{-}{d}\rightarrow d))\vee(-(\stackrel{-}{$

в) получили тождество

 $(aVb)\Lambda(cVd) = (aVb)\Lambda(cVd).$

Методические материалы, характеризующих процедуры оценивания

Функции алгебры логики. Равенство функций. Существенные и фиктивные переменные.

Свойства логических операций: коммутативность, дистрибутивность, ассоциативность. Правила Де Моргана.

Таблицы истинности.

Лемма о числе слов и ее доказательство.

Теорема о совершенной дизьюнктивной нормальной форме.

Теорема о совершенной конъюнктивной нормальной форме.

Полные системы.

Теорема Жегалкина. Полиномы Жегалкина.

Замкнутые классы.

Классы Т0, Т1, L и их замкнутость.

Двойственные и самодвойственные функции. Класс самодвойственных функций.

Монотонность функций. Класс монотонных функций.

Теорема Поста.

Базис алгебры логики. Примеры.

Теорема о максимальном числе функций в базисе алгебры логики.

Предполные классы. Теорема о предполных классах.

Графы. Псевдографы. Мультиграфы. Ориентированность графов.

Матрицы смежности

Матрицы инцидентности

Изоморфизм графов.

Пути. Цепи. Циклы.

Связность графов.

Деревья. Свойства деревьев.

Теорема о различных определениях дерева.

Корневые деревья.

Теорема Понтрягина-Куратовского

Доказать, что если в связном планарном графе G=(V,E) с р вершинами и q рёбрами, отличном от дерева, нет циклов длины меньше k ($k \ge 3$), то $q \le k/(k-2)(p-2)$

Понятие орграфа и связанных с ним определений.

Полусумматор. Сложность полусумматора.

Сумматор. Сложность сумматора.

Схема из функциональных элементов в стандартном базисе.

Вычитатель. Сложность вычитателя.

Верхняя оценка сложности сумматора

Умножитель порядка п

Метод Карацубы

Дешифратор

Сложность дешифратора

Мультиплексор

Верхняя оценка сложности мультиплексора

Метол Шеннона

Теорема о минимальной сложности универсального многополюсника

Полусумматор. Сложность полусумматора.

Предполные классы. Теорема о предполных классах.

Шифратор

Верхняя оценка сложности шифратора

Докажите, что существует шифратор порядка n, со сложностью не превосходящей

n·2n-1

Алгоритм «поиска в глубину»

Геометрическая реализация графов.

Формула Эйлера для планарных графов.

Гомеоморфизм графов.

Теорема о раскраске графов в пять цветов.

Теорема Маркова о взаимной однозначности алфавитного кодирования

Алгоритм распознавания взаимной однозначности кодирования

Неравенство Макмиллана.

Построение оптимальных двоичных кодов. Метод Хаффмана

Коды с исправлением г ошибок. Код Хемминга.

Система канонических уравнений автомата

Представление автоматов схемами из функциональных элементов и элементов

задержки.

Схемы (алгоритмы) сумматора, вычитателя, умножителя

Максимальная сумма баллов, набираемая студентом по дисциплине равна 100.

Оценка в баллах	Оценка по шкале	Обоснование	Уровень сформированности компетенций
Более 80	«Отлично»	Содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному	Высокий уровень
66-80	«Хорошо»	Содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками	Продвинутый уровень

50-65	«Удовлетворительно»	Содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки	Пороговый уровень
Менее 50	«Неудовлетворительно»	Содержание курса не освоено, необходимые практические навыки работы не сформированы, выполненные учебные задания содержат грубые ошибки	Компетенции не сформированы

3. Задания в тестовой форме по дисциплине

Примеры заданий:

Оценка рассчитывается как процент правильно выполненных тестовых заданий из их общего числа.