Министерство науки и высшего образования Российской Федерации

Муромский институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет сандра Григорьевича и Николая Григорьевича Столетов

имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИ ВлГУ)

Кафедра РТ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Электромагнитные поля и волны

Направление подготовки

11.03.01 Радиотехника

Профиль подготовки

Радиотехнические средства передачи, приема и обработки сигналов

Семестр	Трудоем- кость, час./зач. ед.	Лек- ции, час.	Практи- ческие занятия, час.	Лабора- торные работы, час.	Консуль- тация, час.	Конт- роль, час.	Всего (контак- тная работа), час.	СРС, час.	Форма промежу- точного контроля (экз., зач., зач. с оц.)
4	144 / 4	16	16	16	3,6	0,35	51,95	65,4	Экз.(26,65)
Итого	144 / 4	16	16	16	3,6	0,35	51,95	65,4	26,65

1. Цель освоения дисциплины

Цель дисциплины: Овладение фундаментальными понятиями и законами классической и современной теории электромагнетизма и электромагнитных полей, особенностями распространения электромагнитных волн в различных средах, в линиях передачи электромагнитной энергии; способами возбуждения электромагнитных волн.

Задачи изучения дисциплины:

- формирование представления о месте и роли в современном мире электромагнитных явлений и процессов;
- формирование системы основных понятий, используемых для описания электромагнитных процессов и явлений;
- формирование навыков самостоятельной работы, организации исследовательской работы

2. Место дисциплины в структуре ОПОП ВО

Для изучения дисциплины необходимы знания курсов «Физики» и «Математики». Дисциплина «Электромагнитные поля и волны» является предшествующей для дисциплин профессионального цикла: - «Электродинамика и распространение радиоволн»; - «Устройства СВЧ и антенны»; - «Радиотехнические системы».

3. Планируемые результаты обучения по дисциплине

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые компетенции (код,		обучения по дисциплине, в м достижения компетенции	Наименование оценочного
содержание компетенции)	Индикатор достижения компетенции	Результаты обучения по дисциплине	средства
ОПК-1 Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности	ОПК-1.1 Демонстрирует знания математики, необходимые для решения задач в области профессиональной деятельности	знать основные характеристики электромагнитного поля (ОПК-1.1) знать явления, возникающие на границе раздела сред (ОПК-1.1) знать свойства волн, распространяющихся в	Тест, задачи, вопросы к защите лабораторной работы
OHIC 2 C	OHK 22 D. C.	линиях передачи . (ОПК-1.1)	T
ОПК-2 Способен самостоятельно	ОПК-2.2 Выбирает способы и средства измерений и	уметь выбирать способы	Тест, задачи, вопросы к защите лабораторной работы
проводить	и средства измерении и проводит	исследования структуры электромагнитных	защите лаоораторной раооты
экспериментальные	экспериментальные	свободных и направляемых	
исследования и использовать	исследования	электромагнитных волн (ОПК-2.2)	
основные приемы		уметь анализировать	
обработки и		условия распространения	
представления		электромагнитного поля при	
полученных данных		задании характеристик среды . (ОПК-2.2)	

4. Структура и содержание дисциплины Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа.

4.1. Форма обучения: очная Уровень базового образования: среднее общее. Срок обучения 4г.

4.1.1. Структура дисциплины

№	Раздел (тема) дисциплины	Семестр	обу		цихся		і рабо гдаго іком		ским	ьная работа	Форма текущего контроля успеваемости (по неделям семестра),
п/п			Лекции	Практические занятия	Лабораторные работы	Контрольные работы	KII / KP	Консультация	Контроль	Самостоятельная работа	форма промежуточной аттестации(по семестрам)
1	Система уравнений Максвелла	4	6	4						19	Тестирование, решение задач
2	Гармонические электромагнитные процессы	4	2							4	Тестирование
3	Волновые уравнения. Электродинамические потенциалы	4	2	2						8	Тестирование, решение задач
4	Электромагнитные волны свободного однородного пространства	4	2	2	8					3	Тестирование, решение задач, выполнение и защита лабораторной работы
5	Отражение и преломление плоских волн на границе раздела двух сред	4	2	2	4					11	Тестирование, решение задач, выполнение и защита лабораторной работы
6	Электромагнитные волны в направляющих структурах	4	2	6	4					20,4	Тестирование, решение задач, выполнение и защита лабораторной работы
Всего	о за семестр	144	16	16	16			3,6	0,35	65,4	Экз.(26,65)
Итог	0	144	16	16	16			3,6	0,35	65,4	26,65

4.1.2. Содержание дисциплины 4.1.2.1. Перечень лекций

Семестр 4

Раздел 1. Система уравнений Максвелла

Лекция 1.

Электромагнитное поле и параметры среды: Электромагнитное поле и параметры среды: Векторы электромагнитного поля. Классификация сред. Графическое изображение полей. Векторные характеристики поля. Потенциальные и вихревые поля (2 часа).

Лекция 2.

Основные уравнения электродинамики: Уравнения Максвелла в интегральной и дифференциальной форме. Уравнение непрерывности. Закон Ома в дифференциальной форме. Сторонние заряды и токи и их учет в уравнениях Максвелла. Относительность разграничения сред по признаку электропроводности (2 часа).

Лекция 3.

Граничные условия: Граничные условия для векторов электрического поля. Граничные условия для векторов магнитного поля. Граничные условия на поверхности идеального проводника. Физическая сущность граничных условий (2 часа).

Раздел 2. Гармонические электромагнитные процессы

Лекция 4.

Гармонические электромагнитные процессы: Метод комплексных амплитуд. Комплексные проницаемости. Система уравнений монохроматического поля. Средний баланс энергии электромагнитного поля (2 часа).

Раздел 3. Волновые уравнения. Электродинамические потенциалы

Лекция 5.

Волновые уравнения. Электродинамические потенциалы: Волновые уравнения. Векторный и скалярный потенциалы. Вектор Герца. Электродинамические потенциалы монохроматического поля. Энергия электромагнитного поля: Баланс энергии электромагнитного поля. Скорость распространения энергии электромагнитной энергии. Электрическая и магнитная энергия электромагнитного поля. Теорема Умова – Пойтинга (2 часа).

Раздел 4. Электромагнитные волны свободного однородного пространства

Лекция 6.

Электромагнитные воны в свободном пространстве: Плоские волны в однородной среде без потерь и их характеристики. Сферические волны в однородной среде без потерь и их характеристики. Плоские волны в среде с потерями (2 часа).

Раздел 5. Отражение и преломление плоских волн на границе раздела двух сред **Лекция 7.**

Отражение и преломление на плоских границах сред: Нормальное падение плоской волны. Наклонное падение плоской волны. Наклонное падение при отсутствии потерь. Направляемые волны. Условие полного отражения и полного прохождения во вторую среду (2 часа).

Раздел 6. Электромагнитные волны в направляющих структурах

Лекция 8.

Направляемые электромагнитные волны: Направляющие системы. Классификация направляемых волн. Поперечные, электрические и магнитные волны и их характеристики. Волны в металлических волноводах: Волны в прямоугольном волноводе. Волны в круглом волноводе. Токи на стенках прямоугольного и круглого волновода (2 часа).

4.1.2.2. Перечень практических занятий

Семестр 4

Раздел 1. Система уравнений Максвелла

Практическое занятие 1

Векторный анализ волновых полей (2 часа).

Практическое занятие 2

Материальные уравнения (2 часа).

Раздел 2. Волновые уравнения. Электродинамические потенциалы

Практическое занятие 3

Уравнения электродинамики (2 часа).

Раздел 3. Электромагнитные волны свободного однородного пространства

Практическое занятие 4

Плоские электромагнитные волны в неограниченных средах (2 часа).

Раздел 4. Отражение и преломление плоских волн на границе раздела двух сред

Практическое занятие 5

Падение электромагнитных волн на плоскую границу раздела двух диэлектрических сред (2 часа).

Раздел 5. Электромагнитные волны в направляющих структурах

Практическое занятие 6

Волны в металлических волноводах (2 часа).

Практическое занятие 7

Волны в металлических волноводах (2 часа).

Практическое занятие 8

Электромагнитные волны в линиях с волнами Т типа и в замедляющих структурах (2 часа).

4.1.2.3. Перечень лабораторных работ

Семестр 4

Раздел 1. Электромагнитные волны свободного однородного пространства

Лабораторная 1.

Распространение электромагнитных волн в анизотропных средах (4 часа).

Лабораторная 2.

Элементарные излучатели (4 часа).

Раздел 2. Отражение и преломление плоских волн на границе раздела двух сред

Лабораторная 3.

Отражение и преломление плоских волн (4 часа).

Раздел 3. Электромагнитные волны в направляющих структурах

Лабораторная 4.

Исследование поля основной волны прямоугольного волновода (4 часа).

4.1.2.4. Перечень тем и учебно-методическое обеспечение самостоятельной работы

Перечень тем, вынесенных на самостоятельное изучение:

- 1. Векторные характеристики поля.
- 2. Электромагнитные свойства сред.
- 3. Уравнения Максвелла для гармонических полей.
- 4. Классификация электромагнитных явлений.
- 5. Электростатика и магнитостатика.
- 6. Энергия электрического и магнитного поля.
- 7. Теорема взаимности.
- 8. Внутренняя и внешняя задачи электродинамики и условия единственности их решения.
- 9. Ориентация, поляризация и сложение волн.
- 10. Распространение электромагнитных сигналов.
- 11. Условия полного прохождения и отражения волн на границе раздела двух сред.
- 12. Поверхностный эффект и поглощение в проводниках.
- 13. Затухания волн и передача энергии в линиях передачи.
- 14. Теория линий передачи конечной длины. Круговая диаграмма полных сопротивлений.
- 15. Применение принципа двойственности.
- 16. Системы излучателей.

17. Принцип Гюйгенса – Френеля. Применение формулы Кирхгофа к расчету излучения из отверстия.

Для самостоятельной работы используются методические указания по освоению дисциплины и издания из списка приведенной ниже основной и дополнительной литературы.

- **4.1.2.5. Перечень тем контрольных работ, рефератов, ТР, РГР, РПР** Не планируется.
- **4.1.2.6. Примерный перечень тем курсовых работ (проектов)** Не планируется.

4.2 Форма обучения: заочная Уровень базового образования: среднее профессиональное. Срок обучения 3г 6м.

Семестр	Трудоем- кость, час./ зач. ед.	Лек- ции, час.	Практи- ческие занятия, час.	Лабора- торные работы, час.	Консуль- тация, час.	Конт- роль,час.	Всего (контак- тная работа), час.	СРС, час.	Форма промежуточного контроля (экз., зач., зач. с оц.)
3	144 / 4	6	4		3	0,6	13,6	121,75	Экз.(8,65)
Итого	144 / 4	6	4		3	0,6	13,6	121,75	8,65

4.2.1. Структура дисциплины

		Семестр	пе		обуча	ающи	рабо ихся (рабо	ОМ	я работа	Форма текущего контроля успеваемости (по неделям семестра), форма промежуточной аттестации(по семестрам)	
№ п\п	∖п дисциплины		Лекции	Практические занятия	Лабораторные работы	Контрольные работы	КП / КР	Консультация	Контроль		Самостоятельная работа
1	Система уравнений Максвелла	3	2							10	Тестирование
2	Гармонические электромагнитные процессы	3								15	Тестирование
3	Волновые уравнения. Электродинамические потенциалы	3								18	Тестирование
4	Электромагнитные волны свободного однородного пространства	3	2	2						20	Тестирование, решение задач
5	Отражение и преломление плоских волн на границе раздела двух сред	3	2	2						18	Тестирование, решение задач
6	Электромагнитные волны в направляющих структурах	3								40,75	Тестирование
Bcei	го за семестр	144	6	4		+		3	0,6	121,75	Экз.(8,65)
Ито	ГО	144	6	4				3	0,6	121,75	8,65

4.2.2. Содержание дисциплины 4.2.2.1. Перечень лекций

Семестр 3

Раздел 1. Система уравнений Максвелла

Лекция 1.

Система уравнений Максвелла. Уравнения электродинамики (2 часа).

Раздел 2. Электромагнитные волны свободного однородного пространства **Лекция 2.**

Электромагнитные волны свободного пространства (2 часа).

Раздел 3. Отражение и преломление плоских волн на границе раздела двух сред **Лекция 3.**

Отражение и преломление плоских волн на границе раздела двух сред (2 часа).

4.2.2.2. Перечень практических занятий

Семестр 3

Раздел 1. Электромагнитные волны свободного однородного пространства Практическое занятие 1.

Электромагнитные волны свободного пространства (2 часа).

Раздел 2. Отражение и преломление плоских волн на границе раздела двух сред

Практическое занятие 2.

Отражение и преломление плоских волн на границе раздела двух сред (2 часа).

4.2.2.3. Перечень лабораторных работ

Не планируется.

4.2.2.4. Перечень тем и учебно-методическое обеспечение самостоятельной работы

Перечень тем, вынесенных на самостоятельное изучение:

- 1. Векторные характеристики поля.
- 2. Электромагнитные свойства сред.
- 3. Уравнения Максвелла для гармонических поле.
- 4. Уравнения электродинамики.
- 5. Однородные и неоднородные волновые уравнения.
- 6. Электродинамические потенциалы.
- 7. Классификация электромагнитных явлений.
- 8. Электростатика и магнитостатика.
- 9. Энергия электрического и магнитного поля.
- 10. Граничные условия.
- 11. Граничные условия на поверхности проводника.
- 12. Теорема взаимности.
- 13. Внутренняя и внешняя задачи электродинамики и условия единственности их решения.
 - 14. Ориентация, поляризация и сложение волн.
 - 15. Распространение электромагнитных сигналов.
 - 16. Условия полного прохождения и отражения волн на границе раздела двух сред.
 - 17. Поверхностный эффект и поглощение в проводниках.
 - 18. Классификация электромагнитных волн в направляющих системах.
 - 19. Затухания волн и передача энергии в линиях передачи.
 - 20. Решение волнового уравнения для направляющих систем.
 - 21. Волны в линиях передачи.
 - 22. Замедляющие структуры.
 - 23. Волны в диэлектрических волноводах.
 - 24. Теория линий передачи конечной длины.

- 25. Круговая диаграмма полных сопротивлений.
- 26. Задача согласования в линиях передачи.

Для самостоятельной работы используются методические указания по освоению дисциплины и издания из списка приведенной ниже основной и дополнительной литературы.

4.2.2.5. Перечень тем контрольных работ, рефератов, ТР, РГР, РПР

- 1. Расчет параметров гармонических электромагнитных волн, распространяющихся в однородной среде.
- 2. Расчет параметров гармонических электромагнитных волн, распространяющихся в неоднородной среде.

4.2.2.6. Примерный перечень тем курсовых работ (проектов) Не планируется.

5. Образовательные технологии

В процессе изучения дисциплины "Электромагнитные поля и волны" применяется контактная технология преподавания (за исключением самостоятельно изучаемых студентами вопросов). При проведении практических работ применяется имитационный или симуляционный подход. Шаги решения задач студентам демонстрируются при помощи мультимедийной техники. В дальнейшем студенты самостоятельно решают аналогичные задания

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины. Фонды оценочных материалов (средств) приведены в приложении.

7. Учебно-методическое и информационное обеспечение дисциплины.

7.1. Основная учебно-методическая литература по дисциплине

- 1. Мешков, И. Н. Электромагнитное поле. Часть 2. Электромагнитные волны и оптика / И. Н. Мешков, Б. В. Чириков. 2-е изд. Москва, Ижевск : Регулярная и хаотическая динамика, Институт компьютерных исследований, 2019. 416 с http://www.iprbookshop.ru/97378.html
- 2. Электромагнитные поля и волны: Практикум для студентов образовательных программ 11.03.01 Радиотехника; 11.03.02 Инфокоммуникационные технологии и системы связи / сост. Федосеева Е.В. [Электронный ресурс]. Электрон. текстовые дан. (0,9 Мб). Муром.: МИ ВлГУ, 2016. 1 электрон. опт. диск (CD-R). Систем. требования: процессор х86 с тактовой частотой 500 МГц и выше; 512 Мб ОЗУ; Windows XP/7/8; видеокарта SVGA 1280х1024 High Color (32 bit); привод CD-ROM. Загл. с экрана. Рег. номер 0321601975 https://www.mivlgu.ru/iop/mod/folder/view.php?id=4129
- 3. Электромагнитные поля и волны: Методические указания по выполнению лабораторных работ для студентов образовательных программ 11.03.01 Радио-техника; 11.03.02 Инфокоммуникационные технологии и системы связи / сост. Федосеева Е.В. [Электронный ресурс]. Электрон. текстовые дан. (1,2 Мб). Муром.: МИ (филиал) ВлГУ, 2015. 1 электрон. опт. диск (CD-R). Систем. требования: процессор х86 с тактовой частотой 500 МГц и выше; 512 Мб ОЗУ; Windows XP/7/8; видеокарта SVGA 1280x1024 High Color (32 bit); привод CD-ROM. Загл. с экрана. Рег. номер 0321504687 https://www.mivlgu.ru/iop/mod/folder/view.php?id=4130
- 4. Горбачев, А. П. Электромагнитные волны в прямоугольных и круглых волноводах : учебное пособие / А. П. Горбачев, Ю. О. Филимонова. Новосибирск : Новосибирский государственный технический университет, 2012. 212 с http://www.iprbookshop.ru/45199.html

7.2. Дополнительная учебно-методическая литература по дисциплине

1. Электромагнитные поля и волны [Электронный ресурс]: учебное пособие/ В.А. Замотринский [и др.].— Электрон. текстовые данные.— Томск: Томский государственный университет систем управления и радиоэлектроники, 2012.— 181 с.— Режим доступа: http://www.iprbookshop.ru/72228.html.

7.3. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

- В образовательном процессе используются информационные технологии, реализованные на основе информационно-образовательного портала института (www.mivlgu.ru/iop), и инфокоммуникационной сети института:
 - предоставление учебно-методических материалов в электронном виде;
- взаимодействие участников образовательного процесса через локальную сеть института и Интернет;
- предоставление сведений о результатах учебной деятельности в электронном личном кабинете обучающегося.

Информационные справочные системы:

Информационно-справочная социальная сеть радиотехников и электронщиков www.umup.ru/

Сайт- радиотехнические системы http://rateli.ru/

Портал для радиолюбителей http://www.radioman-portal.ru/

Программное обеспечение:

Не предусмотрено.

7.4. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

iprbookshop.ru mivlgu.ru umup.ru rateli.ru radioman-portal.ru mivlgu.ru/iop

8. Материально-техническое обеспечение дисциплины

Лаборатория антенн и устройств СВЧ

Стенды по дисциплинам «Оптические устройства», «Электродинамика и распространение радиоволн», «антенны и устройства СВЧ»; «Антенно-фидерные устройства»; генератор качающей частоты Р2-73; мультиметр АМ-1097; мультиметр НМ8112-3; генератор ГЧ-83 1 шт.; измеритель КСВН панорамный РК 2-47; измерительная линия — 2 шт.; измеритель КСВН панорамный Р2-66; измеритель КСВН панорамный Р2-73; приемник П5-5Б; приемник измерительный П5-14А; индикатор КСВ и ослабления Я2Р-67.

9. Методические указания по освоению дисциплины

Для успешного освоения теоретического материала обучающийся: знакомится со списком рекомендуемой основной и дополнительной литературы; уточняет у преподавателя, каким дополнительным пособиям следует отдать предпочтение; ведет конспект лекций и прорабатывает лекционный материал, пользуясь как конспектом, так и учебными пособиями.

На практических занятиях пройденный теоретический материал подкрепляется решением задач по основным темам дисциплины. Каждой подгруппе обучающихся преподаватель выдает задачу, связанную с расчетом параметров электромагнитных полей и

волн. В конце занятия обучающие демонстрируют полученные результаты преподавателю и при необходимости делают работу над ошибками.

До выполнения лабораторных работ обучающийся изучает соответствующий раздел теории. Перед занятием студент знакомится с описанием заданий для выполнения работы, внимательно изучает содержание и порядок проведения лабораторной работы. Лабораторные работы проводятся в лаборатории "Антенны и устройства СВЧ". Обучающиеся выполняют измерения в соответствии с заданием на лабораторную работу. Полученные результаты исследований сводятся в отчет и защищаются по традиционной методике в классе на следующем лабораторном занятии. Необходимый теоретический материал, индивидуальное задание, шаги выполнения лабораторной работы и требование к отчету приведены в методических указаниях, размещенных на информационно-образовательном портале института.

Самостоятельная работа оказывает важное влияние на формирование личности будущего специалиста, она планируется обучающимся самостоятельно. Каждый обучающийся самостоятельно определяет режим своей работы и меру труда, затрачиваемого на овладение учебным содержанием дисциплины. Он выполняет внеаудиторную работу и изучение разделов, выносимых на самостоятельную работу, по личному индивидуальному плану, в зависимости от его подготовки, времени и других условий.

Форма заключительного контроля при промежуточной аттестации — экзамен. Для проведения промежуточной аттестации по дисциплине разработаны фонд оценочных средств и балльно-рейтинговая система оценки учебной деятельности студентов. Оценка по дисциплине выставляется в информационной системе и носит интегрированный характер, учитывающий результаты оценивания участия студентов в аудиторных занятиях, качества и своевременности выполнения заданий в ходе изучения дисциплины и промежуточной аттестации.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению 11.03.01 Радиотехника и профилю подготовки Радиотехнические средства передачи, приема и обработки сигналов Рабочую программу составил д.т.н., доцент Федосеева Е. В
Программа рассмотрена и одобрена на заседании кафедры PT протокол №16 от 23 мая
2021 года.
Заведующий кафедрой PT
(Подпись)
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии факультета
протокол №9 от 24 мая 2021 года. Председатель комиссии ФИТР Колпаков $A.A.$ (Подпись)

Лист актуализации рабочей программы дисциплины

Программа одобрена на	_учебный год.	
Протокол заседания кафедры №	от20 года.	
Заведующий кафедрой	(Подпись)	(Ф.И.О.)
Программа одобрена на	_учебный год.	
Протокол заседания кафедры №	от20 года.	
Заведующий кафедрой		
	(Подпись)	(Ф.И.О.)
Программа одобрена на	_учебный год.	
Протокол заседания кафедры №	от20 года.	
Заведующий кафедрой		
	(Подпись)	(Ф.И.О.)

Фонд оценочных материалов (средств) по дисциплине

Электромагнитные поля и волны

1. Оценочные материалы для проведения текущего контроля успеваемости по дисциплине

Тесты, вопросы к защите лабораторных работ, задачи находятся в Приложении 1.

Общее распределение баллов текущего контроля по видам учебных работ для студентов

Рейтинг-контроль 1	Тест, решение задач	10
Рейтинг-контроль 2	Тест, решение задач, выполнение и защита лабораторной работы	15
Рейтинг-контроль 3	Тест, решение задач, выполнение и защита двух лабораторных работ	20
Посещение занятий студентом		5
Дополнительные баллы (бонусы)		5
Выполнение семестрового плана самостоятельной работы		5

2. Промежуточная аттестация по дисциплине Перечень вопросов к экзамену / зачету / зачету с оценкой. Перечень практических задач / заданий к экзамену / зачету / зачету с оценкой (при наличии)

Оценочные средства для промежуточной аттестации находятся в Приложении 2.

Методические материалы, характеризующих процедуры оценивания

На основе типовых заданий программным комплексом информационнообразовательного портала МИ ВлГУ формируются в автоматическом режиме тестовые задания для студентов. Программный комплекс формирует индивидуальные задания для каждого зарегистрированного в системе студента и устанавливает время прохождения тестирования. Результатом тестирования является процент правильных ответов. С учетом индивидуального семестрового рейтинга студента формируется итоговая оценка.

Максимальное количество баллов, которое студент может получить на экзамене, в соответствии с Положением составляет 40 баллов.

Максимальная сумма баллов, набираемая студентом по дисциплине равна 100.

Оценка	Оценка по шкале	Обоснование	Уровень
В			сформированности
баллах			компетенций
Более	«Отлично»	Содержание курса освоено	Высокий уровень
80		полностью, без пробелов,	
		необходимые практические навыки	
		работы с освоенным материалом	

		сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному	
66-80	«Хорошо»	Содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками	Продвинутый уровень
50-65	«Удовлетворительно»	Содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки	Пороговый уровень
Менее 50	«Неудовлетворительно»	Содержание курса не освоено, необходимые практические навыки работы не сформированы, выполненные учебные задания содержат грубые ошибки	Компетенции не сформированы

3. Задания в тестовой форме по дисциплине

Примеры заданий:

Вопрос 1

Если divA=0, то поле

- +: соленоидальное
- -: потенциальное
- -: гармоническое
- -: стационарное

Вопрос 2

Вектор E перпендикулярен границе раздела двух диэлектрических сред с параметрами $\epsilon 1$ =2, $\mu 1$ =1, $\epsilon 2$ =4, $\mu 2$ =1. Найти значение вектора E во второй среду у границы раздела, если в первой среде значение вектора E равно 5 B/м

+: 2,5

Полный перечень тестовых заданий с указанием правильных ответов, размещен в банке вопросов на информационно-образовательном портале института по ссылке https://www.mivlgu.ru/iop/question/edit.php?courseid=31&category=20217%2C556&qbshowtext=0 &qbshowtext=1&recurse=0&recurse=1&showhidden=0

Оценка общего числа.	рассчитывается	как	процент	правильно	выполненных	тестовых	заданий	из их