Министерство науки и высшего образования Российской Федерации **Муромский институт (филиал)**

федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИ ВлГУ)

Отделение среднего профессионального образования

	‹	УTBEP	ЖДАЮ»
Замест	титель,	директо	ра по УР
		Д.Е. Ан	ндрианов
<u>«</u> _	25 »	05	2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Физика

для специальности 11.02.01 Радиоаппаратостроение

Программа разработана на основе требований ФГОС среднего общего образования, предъявляемых к структуре, содержанию и результатам освоения учебной дисциплины «Физика», в соответствии с Рекомендациями по организации получения среднего общего образования в пределах освоения программы подготовки специалистов среднего звена среднего профессионального образования на базе основного общего образования (письмо Департамента государственной политики в сфере подготовки рабочих кадров и ДПО Ми-нобрнауки России от 17 марта 2015 г. № 06-259), с учетом Примерной основной образова-тельной программы среднего общего образования, одобренной решением федерального учебно-методического объединения по общему образованию (протокол от 28 июня 2016 г. № 2/16-з).

Рабочую программу составил: к.т.н., доцент Рыжкова М.Н.	20 2021 -
(подпись)	от «20» мая 2021 г.
Рабочая программа рассмотрена и одобрена на заседании кафе	дры ФПМ.
Протокол № 21	от «20» мая 2021 г.
Заведующий кафедрой ФПМ $Opлos\ A.A.$	дпись)

Кафедра-разработчик: физики и прикладной математики.

СОДЕРЖАНИЕ

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	7
3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ	13
4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИ	ПЛИНЫ14

1. ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ

Физика

1.1. Область применения рабочей программы

Программа разработана на основе требований ФГОС среднего общего образования, предъявляемых к структуре, содержанию и результатам освоения учебной дисциплины по специальности «11.02.01 Радиоаппаратостроение», и в соответствии с Рекомендациями по организации получения среднего общего образования в пределах освоения программы подготовки специалистов среднего звена среднего профессионального образования на базе основного общего образования (письмо Департамента государственной политики в сфере подготовки рабочих кадров и ДПО Минобрнауки России от 17 марта 2015 г. № 06-259).

1.2. Место учебной дисциплины в структуре программы подготовки специалистов среднего звена:

Рабочая программа учебной дисциплины является частью программы подготовки специалистов среднего звена по специальности СПО 11.02.01 Радиоаппаратостроение.

Дисциплина ПД.03 Физика является профильной дисциплиной общеобразовательного учебного цикла

Курс физики является общеобразовательным и базируется на школьном курсе физики и математики.

1.3. Цели и задачи учебной дисциплины - требования к результатам освоения учебной дисциплины:

Цель дисциплины

Целями освоения дисциплины "Физика" являются:

Формирование у студентов целостной, системной информационной базы в области физики, научного мировоззрения, навыков познавательной деятельности для успешного усвоения:

- общепрофессиональных и специальных дисциплин основной образовательной программы, которые в свою очередь направлены на освоение студентами обобщенных видов профессиональной деятельности как важнейших и прямых составляющих профессиональной компетентности;
- необходимого минимума базовых, фундаментальных компонентов универсальных, инвариантных компетенций, что позволит выпускнику успешно адаптироваться к меняющимся условиям, постоянно самосовершенствоваться, быть востребованным и конкурентоспособным на профессиональном рынке труда.

Основными задачами дисциплины являются:

- изучение базовых понятий, фундаментальных законов и принципов, составляющих основу современной физической картины мира;
- овладение умениями воспринимать и объяснять физические явления и процессы, использовать знания в образовательной и профессиональной деятельности, критически оценивать информацию естественнонаучного содержания, полученную из различных источников

В результате освоения учебной дисциплины обучающийся должен уметь:

- Уметь объяснять физические явления и процессы, применять физические законы, модели, принципы в образовательной и профессиональной деятельности, физически обосновывать явления окружающего мира.

В результате освоения учебной дисциплины обучающийся должен знать:

- Знать базовые понятия, фундаментальные законы и принципы механики, электричества и электромагнетизма, физики колебаний и волн, термодинамики и квантовой физики, составляющие основу современной физической картины мира;

Освоение содержания учебной дисциплины «Физика» обеспечивает достижение студентами следующих результатов:

- личностных:
- чувство гордости и уважения к истории и достижениям отечественной физической науки; физически грамотное поведение в профессиональной деятельности и быту при обращении с приборами и устройствами;
- готовность к продолжению образования и повышения квалификации в из-бранной профессиональной деятельности и объективное осознание роли физических компетенций в этом:
- умение использовать достижения современной физической науки и физических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;
- умение самостоятельно добывать новые для себя физические знания, используя для этого доступные источники информации;
- умение выстраивать конструктивные взаимоотношения в команде по решению общих задач;
- умение управлять своей познавательной деятельностью, проводить самооценку уровня собственного интеллектуального развития;
 - метапредметных:
- использование различных видов физических задач, применение познавательной деятельности для решения основных методов познания (наблюдения, описания, измерения, эксперимента) для изучения различных сторон окружающей лействительности:
- использование основных интеллектуальных операций: постановки задачи, формулирования гипотез, анализа и синтеза, сравнения, обобщения, систематизации, выявления причинно-следственных связей, поиска аналогов, формулирования выводов для изучения различных сторон физических объектов, явлений и процессов, с которыми возникает необходимость сталкиваться в профессиональной сфере;
 - умение генерировать идеи и определять средства, необходимые для их реализации;
- умение использовать различные источники для получения физической ин-формации, оценивать ее достоверность;
 - умение анализировать и представлять информацию в различных видах;
- умение публично представлять результаты собственного исследования, вести дискуссии, доступно и гармонично сочетая содержание и формы представляемой информации;
 - предметных:
- сформированность представлений о роли и месте физики в современной научной картине мира; понимание физической сущности наблюдаемых во Вселенной явлений, роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;
- владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное использование физической терминологии и символики;
- владение основными методами научного познания, используемыми в физике: наблюдением, описанием, измерением, экспериментом;
- умения обрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;
 - сформированность умения решать физические задачи;
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе, профессиональной сфере и для принятия практических решений в повседневной жизни;
- сформированность собственной позиции по отношению к физической информации, получаемой из разных источников

1.4. Количество часов на освоение программы учебной дисциплины:

Максимальной учебной нагрузки обучающегося 193 часа, в том числе: обязательной аудиторной нагрузки обучающегося 134 часа; самостоятельной нагрузки обучающегося 59 часов.

2. СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов		
	1 семестр	2 семестр	
Максимальная учебная нагрузка (всего)	98	95	
Обязательная аудиторная учебная нагрузка (всего)	72	62	
В том числе:			
лекционные занятия	36	42	
практические занятия	36	20	
лабораторные работы			
контрольные работы			
курсовая работа			
Самостоятельная работа обучающегося (всего)	26	33	
Итоговая аттестация в форме	Рейтинговая оценка	Дифференцированный зачет	

2.2. Тематический план и содержание учебной дисциплины

Наименование	Содержание учебного материала, лабораторные		Уровень
разделов и тем	работы и практические занятия,		освоения
	самостоятельная работа обучающихся		
1	2	3	4
	1 семестр		
Раздел 1	Введение		
Тема 1.1 Введение,	Содержание учебного материала		
промежуточная аттестация	Пекционные занятия. Физика как наука. Основные физические понятия. История	6	1
	развития физики. Физические модели.		
	Международная система единиц СИ. Защита		
	тем самостоятельного изучения. Защита тем		
	самостоятельного изучения.		
Раздел 2	Механика		
Тема 2.1 Кинематика	Содержание учебного материала		
	Лекционные занятия. Основные понятия	2	1
	кинематики: координаты, путь, перемещение.		
	Средняя и мгновенная скорость. Ускорение.		
	Равномерное и равноускоренное движение.		
	Практические занятия. Равномерное движение.	4	2
	Решение задач. Равноускоренное движение.		
	Решение задач.		
Тема 2.2 Движение в	Содержание учебного материала		
поле силы тяжести	Лекционные занятия. Движение в поле силы	2	1
	тяжести. Свободное падение тел.		
	Горизонтальный бросок. Бросок под углом к		
	горизонту.		

	Практические занятия. Свободное падение тел. Решение задач. Горизонтальный бросок. Бросок под углом к горизонту. Решение задач.	4	2
Тема 2.3 Динамика	Содержание учебного материала		
тема 210 датамина	Лекционные занятия. Масса и сила. Природа сил. Движение тел под действием сил. Законы Ньютона. Закон всемирного тяготения. Вес и невесомость.	4	1
	Практические занятия. Масса и сила. Законы Ньютона. Решение задач. Закон Всемирного тяготения. Решение задач.	4	2
Тема 2.4 Статика	Содержание учебного материала		
	<i>Лекционные занятия</i> . Условия равновесия твердых тел. Центр тяжести. Виды равновесия.	2	1
	Самостоятельная работа обучающихся. Простые механизмы.	3	3
Тема 2.5 Законы	Содержание учебного материала		
сохранения в механике	Лекционные занятия. Импульс. Закон сохранения импульса. Механическая работа. Мощность. Энергия: кинетическая, потенциальная, полная. Закон сохранения энергии.	2	1
	Практические занятия. Импульс. Закон сохранения импульса. Решение задач. Механическая работа, механическая мощность. Решение задач. Энергия. Закон сохранения энергии. Решение задач. Контрольная работа.	6	2
	Самостоятельная работа обучающихся. Упругое и неупругое столкновение. Реактивное движение.	6	3
Тема 2.6	Содержание учебного материала		
Механические колебания	Лекционные занятия. Основные характеристики колебательного движения: амплитуда, частота, фаза. Скорость и ускорение при колебательном движении. Пружинный и математический маятники.	2	1
	Практические занятия. Механические колебания. Решение задач.	2	2
	Самостоятельная работа обучающихся. Маятники.	3	3
Раздел 3	Молекулярно-кинетическая теория и		
	термодинамика		
Тема 3.1	Содержание учебного материала		
Молекулярно- кинетическая теория	Лекционные занятия. Основные положения молекулярно-кинетической теории. Взаимодействие молекул. Идеальный газ. Уравнение Менделеева-Клапейрона. Изопроцессы.	4	1
	Практические занятия. Основное уравнение МКТ. Решение задач. Уравнение Менделеева- Клапейрона. Изопроцессы. Решение задач.	4	2

	Самостоятельная работа обучающихся. Агрегатные состояния вещества.	3	3
Тема 3.2	Содержание учебного материала		
Термодинамика	Пекционные занятия. Внутренняя энергия и способы ее изменения. Количество теплоты. Первое начало термодинамики. Применение первого начала к изопроцессам.	2	1
	Практические занятия. Количество теплоты. Нагревание и фазовые превращения. Решение задач. Первое начало термодинамики. Изопроцессы. Решение задач. Контрольная работа.	4	2
	Самостоятельная работа обучающихся. Тепловые двигатели. Второй закон термодинамики.	6	3
Тема 3.3 Свойства	Содержание учебного материала		
твердых тел	Пекционные занятия. Свойства твердых тел. Кристаллические и аморфные тела. Плавление, кристаллизация и сублимация. Монокристаллы.	2	1
Тема 3.4 Свойства	Содержание учебного материала		
жидкостей	Пекционные занятия. Структура и свойства жидкостей. Поверхностное натяжение. Смачивание. Капиллярный эффект. Кипение воздуха. Влажность.	2	1
Раздел 4	Электродинамика		
Тема 4.1	Содержание учебного материала		
Электростатика	Лекционные занятия. Электрический заряд. Закон сохранения электрического заряда. Напряженность электрического поля. Работа сил электрического поля. Потенциал. Разность потенциалов. Электрическая емкость. Конденсаторы.	2	1
	Практические занятия. Закон сохранения электрического заряда. Закон Кулона. Решение задач. Характеристики электрического поля. Решение задач.	4	2
	Самостоятельная работа обучающихся. Диэлектрики в электростатическом поле. Проводники в электростатическом поле.	5	3
Тема 4.2 Постоянный	Содержание учебного материала		
электрический ток	Лекционные занятия. Электрический ток. Условия существования электрического тока. ЭДС. Закон Ома. Соединение проводников. Работа и мощность электрического тока.	2	1
	Практические занятия. Законы Ома для полной электрической цепи и участка электрической цепи. Решение задач. Закон Джоуля-Ленца. Решение задач. Контрольная работа.	4	2
Тема 4.3	Содержание учебного материала		
Электрический ток в различных средах	Лекционные занятия. Теория электропроводности металлов. Зависимость сопротивления от температуры. Электрический	2	1

	ток в вакууме. Электропроводность		
	электролитов. Электропроводность газов.		
	Полупроводники.		
	2 семестр		
Раздел 1	Введение		
Тема 1.1 Введение,	Содержание учебного материала		
промежуточная	Лекционные занятия. Защита тем	4	1
аттестация	самостоятельного изучения.		
	Дифференцированный зачет.		
Раздел 5	Магнетизм		
Тема 5.1 Магнитное	Содержание учебного материала		
поле	Лекционные занятия. Свойства магнитного	4	1
	поля. Магнитная индукция. Проводник с током		
	в магнитном поле. Заряженная частица в		
	магнитном поле. Сила Лоренца.		
	Практические занятия. Магнитное поле.	2	2
	Проводник с током в магнитном поле. Решение		
	задач.	4	
	Самостоятельная работа обучающихся.	4	3
T	Магнитные свойства вещества.		
Тема 5.2	Содержание учебного материала		
Электромагнитная	Лекционные занятия. Электромагнитная	2	1
индукция	индукция. Закон электромагнитной индукции.		
	Правило Ленца. Самоиндукция.	2	2
	Практические занятия. Электромагнитная	2	2
	индукция. Решение задач.	4	3
	Самостоятельная работа обучающихся. Трансформатор: конструкция, назначение,	4	3
	применение.		
Раздел 6	Колебания и волны		
Тема 6.1	Содержание учебного материала		
Электромагнитные	Лекционные занятия. Колебательный контур.	6	1
колебания	Свободные и вынужденные электромагнитные		1
	колебания. Превращение энергии в		
	колебательном контуре. Частота и период		
	электромагнитных колебаний. Ток и		
	напряжение на активных и реактивных		
	элементах в колебательном контуре.		
	Производство, передача и потребление		
	электроэнергии.	_	
	Практические занятия. Частота и период	2	2
T. (2	электромагнитных колебаний. Решение задач.		
Тема 6.2	Содержание учебного материала		4
Электромагнитные	Лекционные занятия. Электромагнитное поле.	2	1
волны	Электромагнитные волны. Радиосвязь и		
	телевидение.	2	2
	Практические занятия. Электромагнитные	2	2
	волны. Решение задач. Контрольная работа.	0	3
	Самостоятельная работа обучающихся. Радиосвязь. Лазеры и мазеры.	8	3
В орган 7			
Раздел 7	Оптика		

Тема 7.1	Содержание учебного материала		
Геометрическая	Лекционные занятия. Законы распространения	2	1
оптика	света: отражение и преломление. Линзы.	_	•
	Практические занятия. Геометрическая оптика.	2	2
	Решение задач.		
Тема 7.2 Волновая	Содержание учебного материала		
оптика	Лекционные занятия. Законы распространения	2	1
	света: дифракция, интерференция, дисперсия.		
	Дифракционная решетка.		
	Практические занятия. Волновая оптика.	2	2
	Решение задач.		
	Самостоятельная работа обучающихся.	4	3
	Химическое действие света.		
Тема 7.3 СТО	Содержание учебного материала		
	Лекционные занятия. Постулаты теории	2	1
	относительности. Связь массы и энергии.		
	Энергия покоя.		
Раздел 8	Квантовая и ядерная физика		
Тема 8.1	Содержание учебного материала		
Корпускулярно-	Лекционные занятия. Гипотеза Планка о	4	1
волновой дуализм	квантах света. Фотоэлектрический эффект.		
	Законы фотоэффекта. Уравнение Эйнштейна		
	для внешнего фотоэффекта. Фотоны. Масса,		
	энергия и импульс фотона. Корпускулярно-		
	волновой дуализм.	2	
	Практические занятия. Фотоэлектрический эффект. Решение задач.	2	2
	Самостоятельная работа обучающихся.	4	3
	Люминесценция.		
Тема 8.2 Ядерная	Содержание учебного материала		
физика	Лекционные занятия. Строение ядра. Опыты	6	1
	Резерфорда. Постулаты Бора. Ядерные силы.		
	Энергия связи атомных ядер. Дефект массы.		
	Закон радиоактивного распада. Виды радиоактивного излучения. Свойства		
	радиоактивного излучения. Своиства ионизирующих излучений.		
	Практические занятия. Постулаты Бора.	4	2
	Решение задач. Контрольная работа. Закон	7	2
	радиоактивного распада. Решение задач.		
	Самостоятельная работа обучающихся.	4	3
	Термоядерные реакции.	•	
Раздел 9	Современная картина мира		
Тема 9.1	Содержание учебного материала		
Современная картина	Лекционные занятия. Элементарные частицы.	8	1
мира	Солнце и ближайшие звезды. Природа Солнца и		
	других звезд. Современные представления о		
	происхождении Солнца и звезд. Наша		
	Галактика. Расширение Вселенной.		
	Практические занятия. Солнце и ближайшие	2	2
	звезды. Контрольная работа.		

	Самостоятельная работа обучающихся. Солнце и ближайшие звезды. Наша Галактика.	5	3
Всего:		193	

Для характеристики уровня освоения учебного материала используются следующие обозначения:

- 1. ознакомительный (узнавание новых объектов, свойств);
- 2. репродуктивный (выполнение деятельности по образцу, инструкции или под руководством);
- 3. продуктивный (планирование и самостоятельное выполнение деятельности, решение проблемных задач).

3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Требования к минимальному материально – техническому обеспечению

Лекционная аудитория

Экран настенный Goldview; проектор Acer X128H DLP Projector; персональный компьютер. Доступ к сети Интернет.

Кабинет естественнонаучных дисциплин

Экран настенный Goldview; Проектор Acer X128H DLP Projector; персональный компьютер -1 шт. Доступ к сети Интернет.

3.2. Информационное обеспечение обучения

Перечень рекомендуемых учебных изданий, интернет – ресурсов, дополнительной литературы.

Основные источники:

- 1. Чакак, А. А. Физика: учебное пособие для СПО / А. А. Чакак, С. Н. Летута. Саратов: Профобразование, 2020. 541 с. ISBN 978-5-4488-0667-4. . http://www.iprbookshop.ru/92191.html
- 2. Физика. Часть 1: Практикум для студентов образовательных программ 09.02.03 Программирование в компьютерных системах; 11.02.01 Радиоаппаратостроение / сост. Рыжкова М.Н. [Электронный ресурс]. Электрон. текстовые дан. (1,9 Мб). Муром: МИ ВлГУ, 2020.. https://evrika.miylgu.ru/index.php?mod=book_inf&com=view_inf&book_id=
 - $https://evrika.mivlgu.ru/index.php?mod=book_inf\&com=view_inf\&book_id=3\\154$
- 3. Паршаков, А. Н. Физика в задачах. Электромагнетизм: учебное пособие для СПО / А. Н. Паршаков. Саратов: Профобразование, Ай Пи Ар Медиа, 2020. 199 с. ISBN 978-5-4488-0727-5, 978-5-4497-0275-3. . http://www.iprbookshop.ru/88766.html

Дополнительные источники:

- 1. Иродов, И. Е. Задачи по общей физике: учебное пособие для вузов / И. Е. Иродов. 14-е изд. Москва : Лаборатория знаний, 2021. 432 с. . https://www.iprbookshop.ru/105768.html
- 2. Марон, Е. А. Опорные конспекты и разноуровневые задания. Физика. 10 класс / Е. А. Марон. Санкт-Петербург : Виктория плюс, 2022. 96 с. . https://www.iprbookshop.ru/123775.html
- 3. Практика решения задач по общей физике. Механика. Молекулярная физика. Термодинамика: учебно-методическое пособие / А. Г. Москаленко, Е. П. Татьянина, Т. Л. Тураева, Т. И. Касаткина. Воронеж: Воронежский государственный технический университет, ЭБС АСВ, 2022. 199 с.. https://www.iprbookshop.ru/126091.html

Интернет-ресурсы:

- 1. http://www.physicsnet.ru/index.php/social/downloads
- 2. http://www.google.com/
- 3. http://www.yandex.ru/
- 4. http://www.rambler.ru/

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Результаты обучения (освоенные умения, усвоенные знания)	Формы и методы контроля и оценки результатов обучения
Уметь объяснять физические явления и процессы, применять физические законы, модели, принципы в образовательной и профессиональной деятельности, физически обосновывать явления окружающего мира	Зачетная работа
Знать базовые понятия, фундаментальные законы и принципы механики, электричества и электромагнетизма, физики колебаний и волн, термодинамики и квантовой физики, составляющие основу современной физической картины мира	Зачетная работа

Фонд оценочных материалов (средств) по дисциплине Физика

1. Оценочные материалы для проведения текущего контроля успеваемости по дисциплине

Тесты:

- 1. Перемещение это:
- 1) линия, по которой двигалось тело
- 2) вектор, проведенный из начального положения тела в конечное
- 3) длина трактории, по которой двигалось тело
- 2. Вектор мгновенной скорости направлен по:
- 1) касательной к траектории движения
- 2) перемещению точки
- 3) радиусу кривизны траектории
- 3. Вектор средней скорости направлен по:
- 4) касательной к траектории движения
- 5) перемещению точки
- 6) радиусу кривизны траектории
- 4. Скорость изменения вектора импульса материальной точки во времени равна:
- 1) изменению кинетической энергии точки
- 2) силе, действующей на точку
- 3) скорости точки
- 4) ускорению точки
- 5. Тело брошено со скоростью 10 м/с под углом тридцать градусов к горизонту. Не учитывая сопротивления воздуха, определить величину скорости тела через 0,5 с после начала движения. Принять g равным десяти метрам на секунду в квадрате:
 - 1) 5
 - 2) 8,65
 - 3) 17,3
 - 4) 1,73
- 6. Совокупность системы координат и часов, жестко связанных с телом отсчета, называется:
 - 1) инерциальной системой отсчета
 - 2) механической системой
 - 3) системой отсчета
- 7. Если частица равномерно движется по окружности, то ее тангенциальное ускорение:
 - 1) увеличивается
 - 2) уменьшается
 - 3) не изменяется
 - 4) равно нулю
 - 8. Первый закон Ньютона называют законом:
 - 1) сохранения импульса
 - 2) инерции
 - 3) изменения импульса

- 9. Второй закон Ньютона называют законом: 1) сохранения импульса 2) инерции 3) изменения импульса 10. С увеличением массы тела его импульс: 1) не изменяется 2) увеличивается 3) уменьшается 11. С увеличением скорости тела его импульс: 1) не изменяется 2) увеличивается 3) уменьшается 12. Консервативные силы создают поля: 1) потенциальные 2) непотенциальные 3) и те, и другие 13. Масса является мерой: 1) взаимодействия тел 2) инертности 3) механического движения 14. Сила, действующая на точку в потенциальном поле, равна взятому с обратным знаком градиенту: 1) полной механической энергии 2) кинетической энергии 3) потенциальной энергии 4) внутренней энергии 15. Мерой взаимодействия тел является:
 - 1) масса
 - 2) работа
 - 3) импульс
 - 4) сила
 - 16. Мерой инертности тела при вращательном движении вокруг оси является момент:
 - 1) силы относительно оси
 - 2) инерции относительно оси
 - 3) импульса относительно оси
 - 17. В замкнутой системе тел сохраняется со временем:
 - 1) момент инерции
 - 2) момент импульса
 - 3) момент силы
- 18. Момент импульса тела относительно оси вращения равен произведению момента инерции относительно той же оси на:
 - угол поворота 1)
 - 2) угловую скорость
 - 3) угловое ускорение

			гящегося без скольжения по
_	ьной поверхности со	скоростью 4 м/с равна (в Дж):	
1)	8		
2)	16		
3)	12		
4)	24		
20. N	Момент внешних сил	относительно неподвижной осн	и равен произведению момента
инерции те	ла относительно той х	ке оси на:	
1)	угловую скорость		
2)	угловое ускорение		
3)	линейную скорости		
4)	тангенциальное уси	корение	
	• •	и, за который фаза колебані	ия получает приращение 2□,
называется			
1)	периодом		
2)	частотой		
3)	амплитудой		
4)	временем релаксац	ии	
		± •	к ней подвесить груз, длина
			и период малых вертикальных
	получившегося пружи	инного маятника:	
1)	0,6 c		
2)	0,8 c		
3)	1 c		
4)	2 c		
23. N	Максимальное значені	ие колеблющейся величины наз	вывается:
1)	периодом		
2)	фазой		
3)	частотой		
4)	амплитудой		
24. ^U		□ секунд называют:	
1)	частотой	•	
2)	начальной фазой		
3)	циклической часто	той	
4)	фазой		
25.	Груз подвешен на	пружине. В положении равн	овесия деформация пружины
			овесия, он начинает совершать
	с периодом:	1	, 1
1)	0,3 c		
2)	0,4 c		
3)	0,5 c		
4)	0,6 c		
,			
Общее рас	спределение баллов т	гекущего контроля по видам	учебных работ для студентов
Рейтинг-	контроль 1	Контрольная работа	20

Контрольная работа

20

Рейтинг-контроль 2

Рейтинг-контроль 3	Контрольная работа	20
Посещение занятий студентом		10
Дополнительные баллы (бонусы)		10
Выполнение семестрового плана самостоятельной работы		20

2. Промежуточная аттестация по дисциплине

Перечень вопросов к экзамену / зачету / зачету с оценкой. Перечень практических задач / заданий к экзамену / зачету / зачету с оценкой (при наличии)

Блок 1 (знать)

- 1. Кинематика материальной точки и твердого тела
- 2. Динамика материальной точки. Законы Ньютона
- 3. Законы сохранения импульса, механической энергии. Работа. Мощность
- 4. Механические колебания.
- 5. Постоянное электрическое поле (закон Кулона, расчет напряженности и потенциала поля)
 - 6. Электрическое поле в диэлектриках
- 7. Проводник в электрическом поле (электрическая емкость, конденсаторы, соединение конденсаторов, энергия заряженных проводников)
 - 8. Законы постоянного электрического тока (законы Ома, Джоуля-Ленца)
 - 9. Действие магнитного поля на заряды и токи
- 10. Постоянное магнитное поле в веществе (токи в атомах и молекулах, намагниченность вещества, магнитная проницаемость, диа-, пара- и ферромагнетики)
- 11. Электромагнитная индукция (закон Фарадея, правило Ленца, самоиндукция, взаимная индукция, энергия магнитного поля)
- 12. Электромагнитные колебания (колебательный контур, свободные и вынужденные колебания)

Геометрическая оптика

- 13. Волновая оптика (интерференция, дифракция, поляризация света)
- 14. Гипотеза Планка. Формула Планка
- 15. Энергия и импульс фотона, фотоэффект
- 16. Модель атома. Постулаты Бора.
- 17. Корпускулярно-волновой дуализм
- 18. Физика атомного ядра и элементарных частиц (дефект массы ядра, энергия связи, радиоактивность, ядерные реакции).
- 19. Теплота, теплоемкость, давление, работа, первое начало термодинамики, энтропия, второе начало термодинамики, циклические процессы, КПД тепловой машины
- 20. Уравнение состояния идеального газа, внутренняя энергия, изопроцессы, адиабатный процесс, цикл Карно и его КПД
- 21. Фундаментальные взаимодействия. Ядра атомов, атомы, молекулы. Макроскопическое состояние вещества: газы, жидкости, твердые тела.
 - 22. Плазма. Планеты. Звезды. Галактики. Большой взрыв и эволюция Вселенной

Блок 2 (уметь)

- 1. Перемещение это:
- 1) линия, по которой двигалось тело
- 2) вектор, проведенный из начального положения тела в конечное
- 3) длина трактории, по которой двигалось тело

- 2. Вектор мгновенной скорости направлен по: 1) касательной к траектории движения 2) перемещению точки 3) радиусу кривизны траектории 3. Вектор средней скорости направлен по: 4) касательной к траектории движения 5) перемещению точки 6) радиусу кривизны траектории 4. Скорость изменения вектора импульса материальной точки во времени равна: 1) изменению кинетической энергии точки 2) силе, действующей на точку 3) скорости точки 4) ускорению точки 5. Тело брошено со скоростью 10 м/с под углом тридцать градусов к горизонту. Не учитывая сопротивления воздуха, определить величину скорости тела через 0,5 с после начала движения. Принять д равным десяти метрам на секунду в квадрате: 1) 5 2) 8.65 17,3 3) 4) 1,73 6. Совокупность системы координат и часов, жестко связанных с телом отсчета, называется: 1) инерциальной системой отсчета 2) механической системой 3) системой отсчета 7. Если частица равномерно движется по окружности, то ее тангенциальное ускорение: 1) увеличивается
 - 2) уменьшается
 - 3) не изменяется
 - 4) равно нулю
 - 8. Первый закон Ньютона называют законом:
 - 1) сохранения импульса
 - 2) инерции
 - 3) изменения импульса
 - 9. Второй закон Ньютона называют законом:
 - 1) сохранения импульса
 - 2) инерции
 - 3) изменения импульса
 - 10. С увеличением массы тела его импульс:
 - 1) не изменяется
 - 2) увеличивается
 - 3) уменьшается
 - 11. С увеличением скорости тела его импульс:

1) не изменяется 2) увеличивается 3) уменьшается 12. Консервативные силы создают поля: 1) потенциальные 2) непотенциальные 3) и те, и другие 13. Масса является мерой: взаимодействия тел 2) инертности 3) механического движения 14. Сила, действующая на точку в потенциальном поле, равна взятому с обратным знаком градиенту: 1) полной механической энергии 2) кинетической энергии 3) потенциальной энергии 4) внутренней энергии 15. Мерой взаимодействия тел является: масса 1) 2) работа 3) импульс 4) сила 16. Мерой инертности тела при вращательном движении вокруг оси является момент: силы относительно оси 1) 2) инерции относительно оси 3) импульса относительно оси 17. В замкнутой системе тел сохраняется со временем:

18. Момент импульса тела относительно оси вращения равен произведению момента

19. Кинетическая энергия диска массой 1 кг, катящегося без скольжения по

20. Момент внешних сил относительно неподвижной оси равен произведению момента

момент инерции
 момент импульса
 момент силы

инерции относительно той же оси на:
1) угол поворота

угловую скорость угловое ускорение

инерции тела относительно той же оси на:

угловую скорость

угловое ускорение

горизонтальной поверхности со скоростью 4 м/с равна (в Дж):

1) 2)

3)

1)

2)

3)

4)

1)

2)

8

16

12

24

- 3) линейную скорость
- 4) тангенциальное ускорение
- 21. Промежуток времени, за который фаза колебания получает приращение $2\square$, называется:
 - 1) периодом
 - частотой
 - 3) амплитудой
 - 4) временем релаксации
- 22. Длина недеформированной пружины 16 см. Если к ней подвесить груз, длина пружины в положении равновесия станет равной 25 см. Найти период малых вертикальных колебаний получившегося пружинного маятника:
 - 1) 0,6 c
 - 2) 0,8 c
 - 3) 1 c
 - 4) 2 c
 - 23. Максимальное значение колеблющейся величины называется:
 - 1) периодом
 - 2) фазой
 - 3) частотой
 - 4) амплитудой
 - 24. Число колебаний за 2 □ секунд называют:
 - 1) частотой
 - 2) начальной фазой
 - 3) шиклической частотой
 - 4) фазой
- 25. Груз подвешен на пружине. В положении равновесия деформация пружины составляет x = 2,5 см. Если груз сместить из положения равновесия, он начинает совершать колебания с периодом:
 - 1) 0,3 c
 - 2) 0,4 c
 - 3) 0,5 c
 - 4) 0.6 c

Блок 3 (владеть)

- 1. Брусок массой движется поступательно по горизонтальной плоскости под действием постоянной силы, направленной под углом к горизонту. Модуль этой силы Коэффициент трения между бруском и плоскостью Чему равен модуль силы трения, действующей на брусок?
- 2. Шайбе массой 100 г, находящейся на наклонной плоскости, сообщили скорость 4 м/с, направленную вверх вдоль наклонной плоскости. Шайба остановилась на расстоянии 1 м от начала движения. Угол наклона плоскости 30°. Чему равна сила трения шайбы о плоскость? Ответ укажите в H с точностью до одного знака после запятой.
- 3. Ядро, летевшее с некоторой скоростью, разрывается на две части. Первый осколок летит под углом 90° к первоначальному направлению со скоростью 20 м/c, а второй под углом 30° со скоростью 80 м/c. Чему равно отношение массы первого осколка к массе второго осколка?
- 4. Пуля массой 10 г, летящая со скоростью 200 м/с, пробивает доску толщиной 2 см и вылетает со скоростью 100 м/с. Определите силу сопротивления доски, считая ее постоянной. Ответ приведите в H.

- 5. Брусок массой $M=300~\Gamma$ соединен с бруском массой $m=200~\Gamma$ невесомой и нерастяжимой нитью, перекинутой через невесомый блок (см. рисунок). Чему равен модуль ускорения бруска массой $200~\Gamma$?
- 6. Груз начинает свободно падать с некоторой высоты без начальной скорости. Пролетев 40 м, груз приобрёл скорость 20 м/с. Чему, на этом участке пути, равно отношение изменения потенциальной энергии груза к работе силы сопротивления воздуха?
- 7. Снаряд массой 2 кг, летящий с некоторой скоростью, разрывается на два осколка. Первый осколок массой 1 кг летит под углом 90° к первоначальному направлению со скоростью 300 м/c. Скорость второго осколка равна 500 м/c. Найти скорость снаряда. Ответ приведите в м/с.
- 8. Камень массой 40 г брошен под углом 60° к горизонту. Начальная кинетическая энергия камня равна 2 Дж. Чему равен модуль импульса камня в верхней точке траектории его движения? Сопротивление воздуха пренебрежимо мало.
- 9. Упругая лёгкая пружина жёсткостью 80 Н/м одним концом прикреплена к лапке штатива. К свободному концу пружины подвешен груз массой 200 г. Определите потенциальную энергию растянутой пружины.
- 10. Груз массой 200 г подвешен на пружине к потолку неподвижного лифта. Лифт начинает двигаться и в течение 2 с равноускоренно опускается вниз на расстояние 5 м. Каково удлинение пружины при опускании лифта, если её жёсткость 100 Н/м?
- 11. Определите начальную скорость бруска, если известно, что после того, как он проехал 0.5 м вниз по наклонной плоскости с углом наклона 30° к горизонту, его скорость стала равна 3 м/с.
- 12. Мимо остановки по прямой улице проезжает грузовик со скоростью 10 м/с. Через 5 с от остановки вдогонку грузовику отъезжает мотоциклист, движущийся с ускорением 3 м/с2. Чему равна скорость мотоциклиста в момент, когда он догонит грузовик?
- 13. Камень бросили под углом к горизонту. Сопротивление воздуха пренебрежимо мало. В верхней точке траектории кинетическая энергия камня равна его потенциальной энергии (относительно поверхности Земли). Под каким углом к горизонту бросили камень?
- 14. Камень, брошенный с крыши дома почти вертикально вверх со скоростью 10 м/с, упал на землю через 3 с после броска. С какой высоты брошен камень?
- 15. Камень, брошенный почти вертикально вверх с крыши дома высотой 15 м, упал на землю со скоростью 20 м/с. Сколько времени летел камень?
- 16. Точечное тело брошено под углом 45° к горизонту со скоростью 20 м/с. Пренебрегая сопротивлением воздуха, определите модуль скорости этого тела через 0,47 с после броска.
- 17. Камень бросили вертикально вверх с начальной скоростью 20 м/с. Через какое минимальное время после броска кинетическая энергия камня уменьшится в 4 раза?
- 18. Лыжник массой 60 кг спустился с горы высотой 20 м. Какой была сила сопротивления его движению по горизонтальной лыжне после спуска, если он остановился, проехав 200 м? Считать, что по склону горы он скользил без трения.
- 19. Папа, обучая девочку кататься на коньках, скользит с ней по льду со скоростью 4 м/с. В некоторый момент он аккуратно толкает девочку в направлении движения. Скорость девочки при этом возрастает до 6 м/с. Масса девочки 20 кг, а папы 80 кг. Какова скорость папы после толчка?
- 20. Дом стоит на краю поля. С балкона с высоты 5 м мальчик бросил камешек в горизонтальном направлении. Начальная скорость камешка 7 м/с, его масса 0,1 кг. Какова кинетическая энергия камешка через 2 с после броска?
- 21. Одноатомный идеальный газ в количестве 4 молей поглощает количество теплоты 2 кДж. При этом температура газа повышается на 20 К. Чему равна работа, совершенная газом в этом процессе?
- 22. Идеальный одноатомный газ, находящийся при температуре Т, нагрели до температуры 2 Т, сообщив ему количество теплоты 10 Дж. В результате газ совершил работу 5 Дж. Какое количество теплоты отдаст газ, если его после этого изохорически охладить до температуры ?

- 23. Идеальный одноатомный газ, находящийся при температуре +327 °C, имеет объём 0,083 м3 и давление 120 кПа. В результате адиабатического процесса температура этого газа уменьшилась на 50 °C. Какую работу совершил газ в этом процессе?
- 24. В тепловой машине, работающей по циклу Карно, газ за один цикл получает от нагревателя количество теплоты 600 Дж. Температура нагревателя равна 227 °C, температура холодильника равна 27 °C. Определите работу, совершаемую газом за один цикл.
- 25. В тепловой машине, работающей по циклу Карно, газ совершает за один цикл работу 225 Дж. Температура нагревателя равна 327 °C, температура холодильника равна 27 °C. Определите количество теплоты, получаемое газом за один цикл.
- 26. В идеальной тепловой машине температура холодильника отличается в 1,5 раза от температуры нагревателя. Над рабочим телом машины совершается один цикл. Чему равно отношение модуля количества теплоты, отданного рабочим телом, к совершённой машиной работе?
- 27. Идеальный одноатомный газ в количестве четырёх молей совершил работу 415 Дж. При этом газ получил количество теплоты, вдвое превышающее модуль этой работы. Определите изменение температуры этого газа.
- 28. В сосуде содержится 0,1 моль аргона. Среднеквадратичная скорость его молекул равна 400 м/с. Чему равна внутренняя энергия этой порции аргона?
- 29. В закрытом сосуде объёмом 20 литров находится 0,5 моль азота. Давление газа в сосуде равно 100 кПа. Чему равна среднеквадратичная скорость молекул этого газа?
- 30. На какую величину изменилась внутренняя энергия четырех молей идеального одноатомного газа, если при изобарном нагревании было затрачено количество теплоты, равное 4155 Дж.
- 31. При температуре 250 K и давлении 1,5 \square 105 Па плотность газа равна 2 кг/м3. Какова молярная масса этого газа?
- 32. Воздух охлаждали в сосуде постоянного объема. При этом температура воздуха в сосуде снизилась в 4 раза, а его давление уменьшилось в 2 раза. Оказалось, что кран у сосуда был закрыт плохо, и через него просачивался воздух. Во сколько раз увеличилась масса воздуха в сосуде?
- 33. Одноатомный идеальный газ в количестве □ молей поглощает количество теплоты 2 кДж. При этом температура газа повышается на 20 К. Работа, совершаемая газом в этом процессе, равна 1 кДж. Чему, приблизительно, равно число молей газа? Ответ округлите до целого числа.
- 34. Идеальный газ изохорно нагревают так, что его температура изменяется на \Box T = 240 K, а давление в 1,6 раза. Масса газа постоянна. Какова начальная температура газа по шкале Кельвина?
- 35. В атмосферном воздухе содержатся кислород и азот. Среднеквадратичная скорость молекул кислорода равна 468 м/с. Чему равна среднеквадратичная скорость молекул азота?
- 36. При уменьшении объема газа в 2 раза давление измени¬лось на 120 кПа, а абсолютная температура возросла на 10%. Ка¬ково было первоначальное давление (в кПа) газа?
- 37. Газ в количестве 0,02 кг при давлении 106 Па и темпе¬ратуре 47°С занимает объем 1660 см3. Определите по этим данным молярную массу (в кг/кмоль) газа.
- 38. При давлении $5 \square 106$ Па газ занимает объем $2 \square 10$ -2м3. Под каким давлением будет находиться газ при той же темпера¬туре, но в объеме 1 м3?
- 39. Газ находится в цилиндре с подвижным поршнем и при температуре 300 К занимает объем 250 см3. Какой объем (в см3) займет газ, если температура понизится до 270 К? Давление постоянно.
- 40. Воздух в открытом сосуде медленно нагрели до 400 К, затем сосуд герметично закрыли и охладили до 280 К. На сколько процентов при этом изменилось давление в сосуде?

Методические материалы, характеризующих процедуры оценивания

На основе типовых заданий преподавателем формируются контрольные задания для студентов: теоретический вопрос (блок 1), 5 заданий в тестовой форме (блок 2) и задача, требующая развернутого решения (блок 3). Результатом выполнения задания является процент правильных ответов. С учетом индивидуального семестрового рейтинга студента формируется экзаменационная оценка.

Максимальная сумма баллов, набираемая студентом по дисциплине равна 100.

Оценка в баллах	Оценка по шкале	Обоснование	Уровень сформированности компетенций
Более 80	«Отлично»	Содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному	Высокий уровень
66-80	«Хорошо»	Содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками	Продвинутый уровень

50-65	«Удовлетворительно»	Содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки	Пороговый уровень
Менее 50	«Неудовлетворительно»	Содержание курса не освоено, необходимые практические навыки работы не сформированы, выполненные учебные задания содержат грубые ошибки	Компетенции не сформированы

3. Задания в тестовой форме по дисциплине

Примеры заданий:

I:B 1

S: Перемещение – это:

- +: вектор, проведенный из начального положения тела в конечное
- -: линия, по которой двигалось тело
- -: длина траектории, по которой двигалось тело
- -: быстрота изменения пути

I: B 2

- S: Мера инертности тела при поступательном движении это
- +: масса
- -: скорость
- -: импульс
- I: B 3
- S: Выберите все обязательные условия, необходимые для возникновения электрического тока
 - +: Наличие свободных носителей тока
 - +: Наличие внешнего электрического поля
 - -: Наличие внешнего постоянного магнитного поля
 - +: Наличие источника сторонних сил
 - -: Наличие проводов

Полный перечень тестовых заданий с указанием правильных ответов, размещен в банке вопросов на информационно-образовательном портале института по ссылке https://www.mivlgu.ru/iop/question/edit.php?courseid=1472&category=30644%2C37820&qbshowte xt=0&recurse=1&showhidden=0

Оценка рассчитывается как процент правильно выполненных тестовых заданий из их общего числа.