Министерство науки и высшего образования Российской Федерации

Муромский институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИ ВлГУ)

Кафедра *ТБ*

«УТВЕРЖДАЮ»
Заместитель директора по УР
Д.Е. Андрианов
17.05.2022

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Электротехника и промышленная электроника

Направление подготовки

18.03.01 Химическая технология

Профиль подготовки

Химическая технология неорганических веществ

Форма Всего Трудоем-Практи-Лаборапромежу-Лек-Консуль-Конт-(контак-CPC, ческие торные кость, точного Семестр тация, ции, роль, тная работы, час./зач. занятия, час. контроля работа), час. час. час. час. (экз., зач., ед. час. час. зач. с оц.) 4 72 / 2 1,25 37,15 **16 16** 1,6 34,85 Зач. с оц. Итого 72 / 2 **16** 16 1,6 1,25 34,85 37,15

1. Цель освоения дисциплины

Цели дисциплины: теоретическая и практическая подготовка бакалавров, изучающих химические технологии, в области электротехники и электроники в такой степени, чтобы они могли выбирать необходимые электротехнические, электронные, электроизмерительные устройства, уметь их правильно эксплуатировать.

Задачей дисциплины является формирование у студентов необходимых знаний основных электротехнических законов и методов анализа электрических, магнитных и электронных цепей; принципов действия, свойств, областей применения; умения экспериментальным способом и на основе паспортных и каталожных данных определять параметры и характеристики типовых электротехнических и электронных устройств.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Электротехника и промышленная электроника» базируется на знаниях и навыках, полученные студентами при освоении дисциплин «Математика» и «Физика». Результаты освоения дисциплины используются при изучении последующих дисциплин учебного плана, как например Оборудование и основы проектирования химических технологических процессов, Оборудование производств неорганических веществ, обеспечивающих дальнейшую подготовку в сфере химических технологий.

3. Планируемые результаты обучения по дисциплине

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые компетенции (код,	Планируемые результаты соответствии с индикаторо	Наименование оценочного	
содержание компетенции)	Индикатор достижения компетенции	Результаты обучения по дисциплине	средства
ОПК-4 Способен обеспечивать проведение технологического процесса, использовать технические средства для контроля параметров технологического процесса, свойств сырья и готовой продукции, осуществлять изменение параметров технологического процесса при изменении свойств сырья	ОПК-4.1 Обеспечивает проведение технологического процесса, производит расчеты основных процессов химической технологии	знать основы электротехники и промышленной электроники (ОПК-4.1) уметь обеспечивать проведение технологического процесса (ОПК-4.1) уметь выполнять электротехнические рассчеты (ОПК-4.1)	тест

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 2 зачетных единицы, 72 часа.

4.1. Форма обучения: очная

Уровень базового образования: среднее общее. Срок обучения 4г.

4.1.1. Структура дисциплины

			Контактная работа обучающихся с педагогическим работником						ота		
№ п\п	I Разлеп (тема) лисциппины I	Семестр	Лекции	Практические занятия	Лабораторные работы	Контрольные работы	KII / KP	Консультация	Контроль	Самостоятельная работа	Форма текущего контроля успеваемости (по неделям семестра), форма промежуточной аттестации(по семестрам)
1	Основы электрических и магнитных цепей	4	6	6						15	тестирование
2	Электрические машины и устройства	4	4	6						9	тестирование
3	Основы электроники	4	6	4						13,15	тестирование
Всего за семестр		72	16	16				1,6	1,25	37,15	Зач. с оц.
Итого		72	16	16				1,6	1,25	37,15	

4.1.2. Содержание дисциплины 4.1.2.1. Перечень лекций

Семестр 4

Раздел 1. Основы электрических и магнитных цепей

Лекция 1.

Электрические цепи (2 часа).

Лекция 2.

Электротехнические законы (2 часа).

Лекция 3.

Методы анализа электрических, магнитных и электронных цепей (2 часа).

Раздел 2. Электрические машины и устройства

Лекция 4.

Принципы действия, конструкции, свойства, области применения и потенциальные возможности основных электротехнических и электронных устройств и электроизмерительных приборов (2 часа).

Лекция 5.

Электрические машины (2 часа).

Раздел 3. Основы электроники

Лекция 6.

Промышленная электроника (2 часа).

Лекция 7.

Электромагнитные устройства (2 часа).

Лекция 8.

Электромагнитное поле (2 часа).

4.1.2.2. Перечень практических занятий

Семестр 4

Раздел 1. Основы электрических и магнитных цепей

Практическое занятие 1

Приемы расчета электрических цепей переменного тока методом комплексных амплитуд (2 часа).

Практическое занятие 2

Приемы расчета электрических цепей операторным методом (2 часа).

Практическое занятие 3

Приемы расчета переходных процессов в электрических цепях (2 часа).

Раздел 2. Электрические машины и устройства

Практическое занятие 4

Приемы расчета нелинейных цепей (2 часа).

Практическое занятие 5

Приемы расчета магнитных цепей (2 часа).

Практическое занятие 6

Приемы расчета движущихся цепей (2 часа).

Раздел 3. Основы электроники

Практическое занятие 7

Расчет трехфазных цепей. Электротехническая аппаратура. Классификация и принципы действия (2 часа).

Практическое занятие 8

Электрические машины постоянного и переменного тока (2 часа).

4.1.2.3. Перечень лабораторных работ

Не планируется.

4.1.2.4. Перечень тем и учебно-методическое обеспечение самостоятельной работы

Перечень тем, вынесенных на самостоятельное изучение:

- 1. Электрическая цепь. Её элементы и назначение элементов в цепи. Параметры элементов электрической цепи.
- 2. Классификация электрических токов, электрических цепей и их элементов. Изображение электрических цепей схемами соединений.
- 3. Положительные направления токов, ЭДС и напряжений. Установившиеся и переходные процессы. Использование законов Кирхгофа в цепях постоянного и переменного тока.
- 4. Режимы работы источника электроэнергии постоянного тока. Схемы замещения элементов источника постоянного тока.
- 5. Простейшая электрическая цепь с активным приёмником. Общие свойства активных участков цепи. Обобщённый закон Ома для участка цепи.
- 6. Цепи с одним источником питания и последовательно, параллельно или смешанными соединёнными пассивными приёмниками.
- 7. Метод пропорциональных величин. Метод эквивалентного преобразования соединений пассивных элементов звездой и треугольником.
- 8. Параллельное соединение пассивных и активных ветвей. Метод напряжений между двумя узлами.
- 9. Анализ сложных цепей постоянного тока при помощи законов Кирхгофа. Метод контурных токов.
- 10. Использование принципа суперпозиции для анализа цепей постоянного тока. Метод эквивалентного генератора.

- 11. Магнитное поле. Электромагнитная индукция. Закон электромагнитной индукции. Самоиндукция. Индуктивность. Магнитные цепи.
- 12. Однофазный переменный ток. Поучение переменного тока. Цепь переменного тока с активным сопротивлением, индуктивностью, емкостью. Полное сопротивление цепи переменного тока.
- 13. Трехфазный переменный ток, получение. Соединение звездой и треугольником. Построение векторной диаграммы.
- 14. Электрические измерения и приборы. Устройство и принцип работы электроизмерительных приборов.
- 15. Устройство и принцип работы однофазного трансформатора. Режимы работы трансформатора. КПД трансформатора, потери энергии в трансформаторе.
- 16. Режимы работы трансформатора. КПД трансформатора, потери энергии в трансформаторе. Устройство и принцип работы трехфазного трансформатора.
- 17. Электрические машины переменного тока. Устройство и принцип работы асинхронного двигателя и генератора. Устройство и принцип работы синхронного двигателя и генератора.
- 18. Электрические машины постоянного тока. Устройство и принцип работы генератора постоянного тока. Способы возбуждения генератора постоянного тока.
- 19. Электрические машины постоянного тока. Устройство и принцип работы двигателя постоянного тока. Способы возбуждения двигателя постоянного тока.
- 20. Устройство и принцип работы электропривода. Классификация электроприводов. Пускорегулирующая и защитная аппаратура.
- 21. Современные схемы электроснабжения предприятий и организаций. Воздушные и кабельные линии. Типы кабелей, область применения и условия работы.
- 22. Защита электрических цепей. Основы электробезопасности. Заземление, зануление, защитное отключение.

Для самостоятельной работы используются методические указания по освоению дисциплины и издания из списка приведенной ниже основной и дополнительной литературы.

4.1.2.5. Перечень тем контрольных работ, рефератов, ТР, РГР, РПР Не планируется.

4.1.2.6. Примерный перечень тем курсовых работ (проектов) Не планируется.

5. Образовательные технологии

Для реализации познавательной и творческой активности студента в учебном процессе используются современные образовательные технологии, дающие возможность повышать качество образования, более эффективно использовать учебное время и снижать долю репродуктивной деятельности студентов. В вузе представлен широкий спектр образовательных педагогических технологий, которые применяются в учебном процессе:

проблемное обучение - создание в учебной деятельности проблемных ситуаций и организация активной самостоятельной деятельности учащихся по их разрешению, в результате чего происходит творческое овладение знаниями, умениями, навыками, развиваются мыслительные способности;

разноуровневое обучение - у преподавателя появляется возможность помогать слабому, уделять внимание сильному, реализуется желание сильных студентов быстрее и глубже продвигаться в образовании. Сильные студенты утверждаются в своих способностях, слабые получают возможность испытывать учебный успех, повышается уровень мотивации ученья;

исследовательские методы в обучении - дают возможность студентам самостоятельно пополнять свои знания, глубоко вникать в изучаемую проблему и предполагать пути ее решения, что важно при формировании мировоззрения;

лекционно-семинарско-зачетная система - дает возможность сконцентрировать материал в блоки и преподносить его как единое целое, а контроль проводить по предварительной подготовке студентов;

информационно-коммуникационные технологии - изменение и неограниченное обогащение содержания образования, использование интегрированных курсов, доступ в интернет;

здоровьесберегающие технологии - использование данных технологий позволяют равномерно во время занятия распределять различные виды заданий, определять время подачи сложного учебного материала, выделять время на проведение самостоятельных работ, что дает положительные результаты в обучении.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины. Фонды оценочных материалов (средств) приведены в приложении.

7. Учебно-методическое и информационное обеспечение дисциплины.

7.1. Основная учебно-методическая литература по дисциплине

- 1. Алиев, И. И. Электротехника и электрооборудование : справочник. Учебное пособие для вузов / И. И. Алиев. Саратов : Вузовское образование, 2014. 1199 с. http://www.iprbookshop.ru/9654
- 2. Гордеев-Бургвиц, М. А. Общая электротехника и электроника : учебное пособие / М. А. Гордеев-Бургвиц. Москва : Московский государственный строительный университет, Ай Пи Эр Медиа, ЭБС АСВ, 2015. 331 с. http://www.iprbookshop.ru/35441
- 3. Сильвашко, С. А. Основы электротехники : учебное пособие / С. А. Сильвашко. Оренбург : Оренбургский государственный университет, ЭБС АСВ, 2009. 209 с. http://www.iprbookshop.ru/30117
- 4. Муравьев, В. М. Электротехника и электроника : конспект лекций / В. М. Муравьев, М. С. Сандлер. Москва : Московская государственная академия водного транспорта, 2006. 68 с. http://www.iprbookshop.ru/46358
- 5. Земляков, В. Л. Электротехника и электроника : учебник / В. Л. Земляков. Ростовна-Дону : Издательство Южного федерального университета, 2008. 304 с. http://www.iprbookshop.ru/47202

7.2. Дополнительная учебно-методическая литература по дисциплине

- 1. Трубникова, В. Н. Электротехника и электроника. Часть 1. Электрические цепи : учебное пособие / В. Н. Трубникова. Оренбург : Оренбургский государственный университет, ЭБС АСВ, 2014. 137 с. http://www.iprbookshop.ru/33672
- 2. Шпиганович, А. Н. Методические указания к лабораторным работам по дисциплине "Электротехника и электроника" / А. Н. Шпиганович, Е. В. Чуркина. Липецк : Липецкий государственный технический университет, ЭБС АСВ, 2013. 34 с. http://www.iprbookshop.ru/22961
- 3. Сборник задач по электротехнике и электронике : учебное пособие / Ю. В. Бладыко, Т. Т. Розум, Ю. А. Куварзин [и др.] ; под редакцией Ю. В. Бладыко. Минск : Вышэйшая школа, 2013. 478 с. http://www.iprbookshop.ru/20262
 - 4. Журнал "Энергосбережение" https://www.abok.ru/pages.php?block=en_mag
 - 5. Журнал "Энергобезопасность и энергосбережение" http://endf.ru/

7.3. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

В образовательном процессе используются информационные технологии, реализованные на основе информационно-образовательного портала института (www.mivlgu.ru/iop), и инфокоммуникационной сети института:

- предоставление учебно-методических материалов в электронном виде;
- взаимодействие участников образовательного процесса через локальную сеть института и Интернет;
- предоставление сведений о результатах учебной деятельности в электронном личном кабинете обучающегося.

Информационные справочные системы:

информационно-образовательный портал "Российское образование" http://window.edu.ru/library

Информационно-образовательный портал МИ ВлГУ https://www.mivlgu.ru/iop/

Научная электронная библиотека "eLibrary" http://elibrary.ru

Электронная библиотека издательства Springer http://www.link.springer.com

Электронная библиотека ВлГУ http://e.lib.vlsu.ru/

Электронная библиотека "ЭВРИКА" http://elib.mivlgu.local/

Программное обеспечение:

LibreOffice (Mozilla Public License v2.0)

7.4. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

iprbookshop.ru
znack.com
abok.ru
endf.ru
window.edu.ru
mivlgu.ru
elibrary.ru
link.springer.com
e.lib.vlsu.ru
elib.mivlgu.local
mivlgu.ru/iop

8. Материально-техническое обеспечение дисциплины

Лекционная аудитория

проектор NEC Projector MP40G: ноутбук Acer 5720G-302G16Mi.

Лаборатория безопасности жизнедеятельности

Гигрометр волосяной; барометр-анероид; анемометр чашечный У-5; психрометр бытовой; регулятор напряжения ФЭП; номограмма для определения эффективной и эффективно-эквивалентной температур; график перевода показаний анемометра в скорость измерительная система для определения движения воздуха; вентилятор бытовой; температуры вспышки топлива и масел ПТВ-1; газоанализатор УГ-4; устройство для измерения электрического сопротивления тела человека на постоянном токе (вольтметр; миллиамперметр; диски-электроды); комплект актов о несчастных случаях на производстве; измеритель шума и вибрации ВШВ-003-М3; газоанализатор «Элан CO-50»; измеритель электрического и магнитного поля ИЭП – 0,5 ИМП-0,5; люксметр «ТКА-Люкс»; электропылесос; ареометр; термометр контактный Testo 720; датчик температуры поверхностей 150-0 56128; цифровой USB-термометр MP707 - 2шт; Дозиметр ДРГ-01Т1.

9. Методические указания по освоению дисциплины

Для успешного освоения теоретического материала обучающийся: знакомится со списком рекомендуемой основной и дополнительной литературы; уточняет у преподавателя, каким дополнительным пособиям следует отдать предпочтение; ведет конспект лекций и прорабатывает лекционный материал, пользуясь как конспектом, так и учебными пособиями.

До выполнения лабораторных работ обучающийся изучает соответствующий раздел теории. Перед занятием студент знакомится с описанием заданий для выполнения работы,

внимательно изучает содержание и порядок проведения лабораторной работы. Лабораторная работа проводятся в лаборатории "электротехники". Обучающиеся выполняют эксперименты на лабораторном оборудовании в соответствии с заданием на лабораторную работу. Полученные результаты исследований сводятся в отчет и защищаются по традиционной методике в классе на следующем лабораторном занятии.

Самостоятельная работа оказывает важное влияние на формирование личности будущего специалиста, она планируется обучающимся самостоятельно. Каждый обучающийся самостоятельно определяет режим своей работы и меру труда, затрачиваемого на овладение учебным содержанием дисциплины. Он выполняет внеаудиторную работу и изучение разделов, выносимых на самостоятельную работу, по личному индивидуальному плану, в зависимости от его подготовки, времени и других условий.

Форма заключительного контроля при промежуточной аттестации — зачет с оценкой. Для проведения промежуточной аттестации по дисциплине разработаны фонд оценочных средств и балльно-рейтинговая система оценки учебной деятельности студентов. Оценка по дисциплине выставляется в информационной системе и носит интегрированный характер, учитывающий результаты оценивания участия студентов в аудиторных занятиях, качества и своевременности выполнения заданий в ходе изучения дисциплины и промежуточной аттестации.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению $18.03.01~$ Химическая технология и профилю подготовки Химическая технология неорганических веществ
Рабочую программу составил к.т.н., доцент Середа С.Н
Программа рассмотрена и одобрена на заседании кафедры ТБ
протокол № 18 от 11.05.2022 года.
Заведующий кафедрой ТБ
(Подпись)
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии факультета
протокол № 6 от 12.05.2022 года.
Председатель комиссии МСФ <i>Калиниченко М.В.</i> (Подпись) $(\Phi.И.O.)$
(ПОДПИСЬ) $(\Psi.И.О.)$

Лист актуализации рабочей программы дисциплины

Программа одобрена на	_учебный год.	
Протокол заседания кафедры №	от20 года.	
Заведующий кафедрой	(Подпись)	(Ф.И.О.)
Программа одобрена на	_учебный год.	
Протокол заседания кафедры №	от20 года.	
Заведующий кафедрой	(Подпись)	(Ф.И.О.)
Программа одобрена на	_учебный год.	
Протокол заседания кафедры №	от20 года.	
Заведующий кафедрой		(7.77.0)
	(Подпись)	(Ф.И.О.)

Фонд оценочных материалов (средств) по дисциплине

Электротехника и промышленная электроника

1. Оценочные материалы для проведения текущего контроля успеваемости по дисциплине

Тесты текущего контроля знаний

Тест 1

- 1. Физический смысл первого закона Кирхгофа:
- а. закон баланса токов в узле: сумма токов, сходящихся в узле равна нулю;
- b. сумма ЭДС источников питания в любом контуре равна сумме падений напряжения на элементах этого контура;
 - с. определяет связь между основными электрическими величинами на участках цепи;
- d. энергия, выделяемая на сопротивлении при протекании по нему тока пропорциональна произведению квадрата силы тока и величины сопротивления;
- е. мощность, развиваемая источниками электроэнергии, должна быть равна мощности преобразования в цепи электроэнергии в другие виды энергии.
 - 2.Собственное (контурное) сопротивление это...
 - а. сумма сопротивлений в каждом независимом контуре;
 - b. сумма сопротивлений в каждом из смежных контуров;
 - с. сумма ЭДС в каждом независимом контуре;
 - d. сумма ЭДС в каждом из смежных контуров;
 - е. сумма токов, которые протекают в каждом независимом контуре.
 - 3. Ветвь электрической цепи это...
 - а. ее участок, расположенный между двумя узлами;
 - разность напряжений в начале и в конце линии;
 - с. совокупность устройств, предназначенных для получения электрического тока;
 - d. точка электрической цепи, в которой соединяется три и более проводов;
 - е. замкнутый путь, проходящий по нескольким ветвям.
 - 4. Количество уравнений, записываемых по методу контурных токов определяется...
 - а. числом независимых контуров в данной схеме;
 - b. числом ветвей в данной схеме;
 - с. числом контуров в данной схеме;
 - d. числом узлов в данной схеме;
 - е. числом источников питания в данной схеме.
 - 5. Достоинство метода контурных токов заключается в том, что...
 - а. позволяет сократить число уравнений, получаемых по законам Кирхгофа;
 - в. число независимых узлов меньше числа контуров;
 - с. позволяет найти токи в ветвях без составления и решения системы уравнений;
 - d. система уравнений составляется только по второму закону Кирхгофа;
- е. в каждом независимом контуре протекает свой ток, который создает падение напряжения на тех сопротивлениях цепи, по которым он протекает.
 - 6.Взаимное сопротивление это...
 - а. сумма сопротивлений в каждом из смежных контуров;
 - b. сумма сопротивлений в каждом независимом контуре;
 - с. сумма ЭДС в каждом независимом контуре;
 - d. сумма ЭДС в каждом из смежных контуров;
 - е. сумма токов, которые протекают в каждом независимом контуре.

- 7.Отличительные признаки простых цепей (несколько ответов).
- а. наличие только одного источника энергии;
- b. соединение элементов цепи выполнено по правилам последовательного и параллельного соединений;
 - с. возможность до расчетов указать истинные направления токов в ветвях;
 - d. наличие нескольких замкнутых контуров;
 - е. произвольное размещение источников питания.
 - 8. Физический смысл закона Ома.
 - а. определяет связь между основными электрическими величинами на участках цепи;
- b. сумма ЭДС источников питания в любом контуре равна сумме падений напряжения на элементах этого контура;
 - с. закон баланса токов в узле: сумма токов, сходящихся в узле равна нулю;
- d. энергия, выделяемая на сопротивлении при протекании по нему тока, пропорциональна произведению квадрата силы тока и величины сопротивления;
- е. мощность, развиваемая источниками электроэнергии, должна быть равна мощности преобразования в цепи электроэнергии в другие виды энергии.
 - 9. Контурная ЭДС это...
 - а. сумма ЭДС в каждом независимом контуре;
 - b. сумма сопротивлений в каждом независимом контуре;
 - с. сумма ЭДС в каждом из смежных контуров;
 - d. сумма токов, которые протекают в каждом независимом контуре;
 - е. сумма сопротивлений в каждом из смежных контуров.
 - 10. Сущность метода свертки схемы заключается в том, что он...
 - а. основан на возможности эквивалентных преобразований;
 - b. основан на эквивалентной замене элементов преобразованного участка;
 - с. основан на применении законов Кирхгофа;
 - d. основан на составлении системы уравнений;
 - е. основан на применении закона Ома.
 - 11. Физический смысл баланса мощностей...
- а. мощность, развиваемая источниками электроэнергии, должна быть равна мощности преобразования в цепи электроэнергии в другие виды энергии;
 - b. определяет связь между основными электрическими величинами на участках цепи;
- с. сумма ЭДС источников питания в любом контуре равна сумме падений напряжения на элементах этого контура;
 - d. закон баланса токов в узле: сумма токов, сходящихся в узле равна нулю;
- е. энергия, выделяемая на сопротивлении при протекании по нему тока, пропорциональна произведению квадрата силы тока и величины сопротивления.
 - 12. Узел (точка) разветвления это...
 - а. точка электрической цепи, в которой соединяется три и более проводов;
 - b. совокупность устройств, предназначенных для получения электрического тока;
 - с. разность напряжений в начале и в конце линии;
 - d. ее участок, расположенный между двумя узлами;
 - е. замкнутый путь, проходящий по нескольким ветвям.
 - 13. Главное условие эквивалентного преобразования схем:...
- а. преобразование схемы, при котором токи и напряжения в непреобразованной части изменяются;

- b. преобразование схемы, при котором токи и напряжения в непреобразованной части остаются неизменными;
- с. составление и решение системы уравнений, получаемых по второму закону Кирхгофа;
 - d. преобразование схемы в соответствии с законами Кирхгофа;
- е. составление и решение системы уравнений, получаемых по первому закону Кирхгофа.
 - 14. Как определяются реальные токи на основе контурных токов? (несколько вариантов)
 - а. если в ветви проходит только один контурный ток, то реальный равен этому току;
- b. если в ветви проходит несколько контурных токов, то реальный ток равен одному из этих токов;
 - с. если в ветви проходит несколько контурных токов, то реальный ток равен их сумме;
- d. если в ветви проходит только один контурный ток, то реальный равен суме контурных токов;
- е. если в ветви проходит несколько контурных токов, то реальный ток равен их разности.
 - 15. Переменный ток это...
- а. периодический ток, все значения которого повторяются через одинаковые промежутки времени;
 - b. значение переменной величины в произвольный момент времени;
 - с. совокупность всех изменений переменной величины;
 - d. наибольшее из всех мгновенных значений изменяющейся величины за период;
- е. такой эквивалентный постоянный ток, который, проходя через сопротивление, выделяет в нем за период одинаковое количество тепла.
 - 16.Волновое (характеристическое) сопротивление это...
 - а. величина, определяемая параметрами реактивных элементов контура;
 - b. величина, определяющая его эффективность (качество);
 - с. отношение действующих значение напряжения и тока в цепи;
 - d. сопротивление индуктивности или емкости контура при резонансе;
 - е. отношение активной мощности к полной мощности.
 - 17. Амплитудное значение переменной величины это...
 - а. наибольшее из всех мгновенных значений изменяющейся величины за период;
 - b. совокупность всех изменений переменной величины;
 - с. значение переменной величины в произвольный момент времени;
- d. периодический ток, все значения которого повторяются через одинаковые промежутки времени;
- е. такой эквивалентный постоянный ток, который, проходя через сопротивление, выделяет в нем за период одинаковое количество тепла.
 - 18. Действующее значение переменной величины это...
 - а. значение переменной величины в произвольный момент времени;
 - b. совокупность всех изменений переменной величины;
- с. периодический ток, все значения которого повторяются через одинаковые промежутки времени;
 - d. наибольшее из всех мгновенных значений изменяющейся величины за период;
- е. такой эквивалентный постоянный ток, который, проходя через сопротивление, выделяет в нем за период одинаковое количество тепла.
 - 19. Добротность контура это...
 - а. величина, определяющая его эффективность (качество);

- величина, определяемая параметрами реактивных элементов контура;
- с. отношение действующих значение напряжения и тока в цепи;
- d. сопротивление индуктивности или емкости контура при резонансе;
- е. отношение активной мощности к полной мощности.

Тест 2

```
1. u = 100 sin(wt); R = 20 Ом; Напишите выражение для тока в цепи. a. i = 5 sin(wt); b. i = 5 A; c. i = 5 sin(wt + \pi/2); d. i = 5 sin(wt - \pi/2); e. i = 5 sin(wt + \pi/2).
```

- 2.Индуктивность катушки в колебательном контуре увеличилась в два раза, емкость конденсатора уменьшилась в два раза. Как изменилось волновое сопротивление контура?
 - а. Увеличилось в два раза;
 - b. Увеличилось в четыре раза;
 - с. Не изменилось;
 - d. Уменьшилось в два раза;
 - е. Уменьшилось в четыре раза.

```
3.XC=50 Ом; u=50\sin(wt-\pi/2); Напишите выражение для тока в цепи. a. i=\sin(wt); b. i=\sin(wt-\pi/2); c. i=\sin(wt+\pi/2); d. i=1,41\sin(wt); e. i=1,41\sin(wt+\pi).
```

- 4. В колебательном контуре резонанс напряжений при XL = Xc = 10 Ом. Определить волновое сопротивление контура.
 - а. 10 Ом;
 - b. 100 Ом;
 - с. 20 Ом;
 - d. 200 Ом;
 - е. 31,4 Ом.
 - 5. XL = 10 Ом; $u = 10\sin(wt)$; Напишите выражение для тока в цепи.
 - a. $i = \sin(wt-\pi/2)$;
 - b. $i = \sin(wt)$;
 - c. $i = 10\sin(wt-\pi/2)$;
 - d. $i = 10\sin(wt)$;
 - e. $i = 10\sin(wt + \pi/2)$.
- 6. Индуктивность и емкость колебательного контура увеличились в четыре раза. Как изменилось волновое сопротивление контура?
 - а. Увеличилось в четыре раза;
 - b. Увеличилось в два раза;
 - с. Не изменилось;
 - d. Уменьшилось в два раза;
 - е. Уменьшилось в четыре раза.
- 7. Действующее значение напряжения, приложенного к цепи, U = 100 B. Полное сопротивление цепи 10 Ом. Определить амплитуду тока в цепи.

```
d. 1,41 A;
      e. 2 A.
      8. Действующее значение тока в цепи равно 1 А, полное сопротивление цепи 10 Ом.
Чему равна амплитуда напряжения, приложенного к цепи, и каков характер сопротивления,
если вектор напряжения отстает на \pi/2 от вектора тока?
      а. 14,1 В, емкостной;
      b. 1 B, активный;
      с. 1,41 В, индуктивный;
      d. 14,1 B, активно-индуктивный;
      е. 1,41 В, активно-емкостной.
      9. К цепи, сопротивление которой Z = 50 Ом, приложено напряжение u = 282\sin 314t В.
Определите действующее значение тока в цепи.
      a. 4 A;
      b. 14,1 A;
      c. 314 A;
      d. 28,2 A;
      e. 1.41 A.
      10. Найти волновое сопротивление контура, в котором L = 0.01 \, \text{Гн}; C = 10-6\Phi.
      а. 100 Ом;
      b. 100 Ом;
      с. 314 Ом;
      d. 1000 Ом;
      е. 31,4 Ом.
      11. К цепи приложено напряжение u = 141\sin 314t В. Сопротивление цепи Z = 20 Ом.
Определить действующее значение тока.
       a. I = 5 A;
      b. I = 7,05 A;
      c. I = 14,1 A;
      d. I = 70,5 A;
      e.I = 1,41 A.
      12. XL = Xc = 100 Ом. Чему равно волновое сопротивление последовательного
колебательного контура?
      а. 100 Ом;
      b. 10 Ом;
      с. 1000 Ом;
      d. 10000 Ом:
      е. 314 Ом.
      13. Последовательно соединены R,L,C. L = 0.1~\Gamma H, Xc = 31.4~OM, f = 50~\Gamma H.
Выполняются ли условия резонанса?
      а. да;
      b. нет;
      с. Приведенных данных недостаточно для ответа на вопрос;
      d. Выполняются при условии, что R << Xc;
      е. Выполняются при условии, что R >> Xc.
```

a. 14,1 A;b. 10 A;c. 20 A;

- 14. Емкость конденсатора в колебательном контуре увеличилась в четыре раза. Как изменилось волновое сопротивление колебательного контура?
 - а. Уменьшилось в два раза;
 - b. Увеличилось в четыре раза;
 - с. Увеличилось в два раза;
 - d. Уменьшилось в четыре раза;
 - е. Не изменилось.

Тест 3

- 1. Одно из важнейших достоинств цепей переменного тока по сравнению с цепями постоянного тока.
 - а. Возможность изменения тока в цепи с помощью трансформатора;
 - Возможность передачи электроэнергии на близкие расстояния;
 - с. Возможность передачи электроэнергии на дальние расстояния;
 - d. Возможность преобразования электроэнергии в тепловую и механическую;
 - е. Возможность изменения напряжения в цепи с помощью трансформатора.
 - 2. Чему равно отношение напряжений на зажимах первичной и вторичной обмоток?
 - а. Отношению чисел витков обмоток;
 - b. Это зависит от конструктивных особенностей;
 - с. Приближенно отношению чисел витков обмоток;
 - d. Для решения задачи недостаточно данных;
 - е. Это зависит от схемы соединения обмоток.
- 3. Определить значение коэффициента трансформации, если U1 = 200 B; P = 1 кВт; I2 = 0,5 A
 - a. $k \approx 10$;
 - b. $k \approx 0.1$;
 - с. Для решения задачи недостаточно данных;
 - d. k = 10:
 - e. k = 0.1.
- 4. Какие клеммы должны быть подключены к питающей сети у понижающего трансформатора?
 - a. A, B, C;
 - b. a, b, c;
 - c. 0, a, b, c;
 - d. A, b, c;
 - e. 0, A, B, C.
- 5. При каком напряжении целесообразно: А) передавать энергию? Б) потреблять энергию?
 - а. А) высоком, Б) низком;
 - b. A) низком, Б) высоком;
 - с. Определяется характером цепи;
 - d. A) высоком, Б) высоком;
 - е. А) низком, Б) низком.
- 6. Может ли напряжение на зажимах вторичной обмотки превышать: А) ЭДС первичной обмотки Б) ЭДС вторичной обмотки?
 - а. А) может, Б) не может;
 - b. Может;

- с. Не может;
- d. A) не может, Б) может;
- е. Определяется схемой соединения обмоток.
- 7. Ток во вторичной обмотке трансформатора увеличился в два раза. Как изменятся потери энергии в первичной обмотке?
 - а. Уменьшатся в два раза;
 - b. Не изменятся;
 - с. Увеличатся в два раза;
 - d. Увеличатся в четыре раза;
 - е. Немного уменьшатся.
 - 8. Какое равенство несправедливо при холостом ходе трансформатора?
 - a. $E2 \approx U2$;
 - b. U2 /U1≈k;
 - c. $\omega 2 / \omega 1 = k$;
 - d. I1 /I2 \approx k;
 - e. $\omega 2 / \omega 1 \approx k$.
- 9. Ток нагрузки трансформатора увеличился в полтора раза. Как изменится магнитный поток в сердечнике трансформатора?
 - а. Уменьшится в полтора раза;
 - b. Увеличится в полтора раза;
 - с. Увеличится в три раза;
 - d. Не изменится;
 - е. Уменьшится в три раза.
- 10. Число витков в каждой фазе первичной обмотки 1000, в каждой фазе вторичной обмотки 200. Линейное напряжение питающей цепи 1000 В. Определить линейное напряжение на выходе трансформатора, если обмотки соединены по схеме «звезда треугольник».
 - a. $200/\sqrt{3}$ B;
 - b. 200 B;
 - c. 5000 B;
 - d. $1000/\sqrt{3}$ B;
 - e.200 $\sqrt{3}$ B.
- 11. Потери в магнитопроводе равны нулю. Будет ли протекать ток через обмотку катушки?
 - а. Будет протекать переменный ток;
 - b. He будет;
 - с. Будет протекать ток намагничивания;
 - d. Для решения задачи недостаточно данных;
 - е. Это зависит от характера тока.
- 12. Как изменится магнитный поток в сердечнике трансформатора при увеличении тока нагрузки в три раза?
 - а. Уменьшится в три раза;
 - b. Не изменится;
 - с. Увеличится в три раза;
 - d. Увеличится незначительно;
 - е. Уменьшится незначительно.

13. ЭДС первичной обмотки трансформатора 10 В, вторичной – 130 В. Число витков
первичной обмотки 20. определить число витков вторичной обмотки.
a. 260;
b. 2;
c. 13;
d. 200;
e. 20.

- 14. Однофазный трансформатор подключен к сети 220 В. Потребляемая мощность 2,2 кВт. Ток вторичной обмотки 2,5 А. Найти коэффициент трансформации. а. $k \approx 4$;
 - b. $k \approx 2$;
 - c. $k \approx 3$:
 - d. $k \approx 5$;
 - e. $k \approx 2.5$.
 - 15. На каком законе основан принцип действия трансформатора?
 - а. На законе электромагнитной индукции;
 - b. На законе Ампера;
 - с. На принципе Ленца;
 - d. На правиле буравчика.
 - е. На законе Ома.
- 16. Мощность на входе трансформатора 10 кВт; на выходе 9,7 кВт. Определить КПД трансформатора.
 - a. 0,97;
 - b. 97 %;
 - c. 0,99;
 - d. Задача не определена, так как не задан коэффициент трансформации; e.0.98.
- 17. Выбрать из представленных выражений формулу определяющую КСВ линии с распределенными параметрами.
- 18. Вычислить резонансную частоту последовательного колебательного контура, если при частоте 500Γ ц при XL=40 Ом, Xc=0,5Ом.
- 19. Вычислить резонансную частоту параллельного колебательного контура, если при частоте 5000Γ ц при XL=70 Ом, Xc=10,5Ом.
- 20. Графическим методом определить входной ток по BAX двух параллельно соединенных нелинейных элементов при известном напряжении U=2B.
- 21. Выбрать формулу описывающую второй закон Кирхгофа для левого контура разветвленной магнитной цепи (рис).
 - 22. Выбрать из представленных формул выражение описывающее закон полного тока.
- 23. Индуктивность контура L=150 мГн. Для настройки последовательного колебательного контура на резонансную частоту 2000 Гц конденсатор какой емкости необходимо подключить.

Общее распределение баллов текущего контроля по видам учебных работ для студентов

Рейтинг-контроль 1	3 практических занятия	10
Рейтинг-контроль 2	3 практических занятия	10
Рейтинг-контроль 3	2 практических занятия	20
Посещение занятий студентом		10
Дополнительные баллы (бонусы)	научная работа	10
Выполнение семестрового плана самостоятельной работы	решение типовых задач РГР	40

2. Промежуточная аттестация по дисциплине Перечень вопросов к экзамену / зачету / зачету с оценкой. Перечень практических задач / заданий к экзамену / зачету / зачету с оценкой (при наличии)

Тест контроля промежуточной аттестации ОПК-4:

Блок 1 (знать)

- 1. Физический смысл первого закона Кирхгофа:
- а. закон баланса токов в узле: сумма токов, сходящихся в узле равна нулю;
- b. сумма ЭДС источников питания в любом контуре равна сумме падений напряжения на элементах этого контура;
 - с. определяет связь между основными электрическими величинами на участках цепи;
- d. энергия, выделяемая на сопротивлении при протекании по нему тока, пропорциональна произведению квадрата силы тока и величины сопротивления;
- е. мощность, развиваемая источниками электроэнергии, должна быть равна мощности преобразования в цепи электроэнергии в другие виды энергии.
 - 2.Собственное (контурное) сопротивление это...
 - а. сумма сопротивлений в каждом независимом контуре;
 - b. сумма сопротивлений в каждом из смежных контуров;
 - с. сумма ЭДС в каждом независимом контуре;
 - d. сумма ЭДС в каждом из смежных контуров;
 - е. сумма токов, которые протекают в каждом независимом контуре.
 - 3.Ветвь электрической цепи это...
 - а. ее участок, расположенный между двумя узлами;
 - b. разность напряжений в начале и в конце линии;
 - с. совокупность устройств, предназначенных для получения электрического тока;
 - d. точка электрической цепи, в которой соединяется три и более проводов;
 - е. замкнутый путь, проходящий по нескольким ветвям.
 - 4. Количество уравнений, записываемых по методу контурных токов определяется...
 - а. числом независимых контуров в данной схеме;
 - b. числом ветвей в данной схеме;
 - с. числом контуров в данной схеме;
 - d. числом узлов в данной схеме;
 - е. числом источников питания в данной схеме.

- 5. Достоинство метода контурных токов заключается в том, что...
- а. позволяет сократить число уравнений, получаемых по законам Кирхгофа;
- b. число независимых узлов меньше числа контуров;
- с. позволяет найти токи в ветвях без составления и решения системы уравнений;
- d. система уравнений составляется только по второму закону Кирхгофа;
- е. в каждом независимом контуре протекает свой ток, который создает падение напряжения на тех сопротивлениях цепи, по которым он протекает.
 - 6.Взаимное сопротивление это...
 - а. сумма сопротивлений в каждом из смежных контуров;
 - b. сумма сопротивлений в каждом независимом контуре;
 - с. сумма ЭДС в каждом независимом контуре;
 - d. сумма ЭДС в каждом из смежных контуров;
 - е. сумма токов, которые протекают в каждом независимом контуре.
 - 7.Отличительные признаки простых цепей (несколько ответов).
 - а. наличие только одного источника энергии;
- b. соединение элементов цепи выполнено по правилам последовательного и параллельного соединений;
 - с. возможность до расчетов указать истинные направления токов в ветвях;
 - d. наличие нескольких замкнутых контуров;
 - е. произвольное размещение источников питания.
 - 8. Физический смысл закона Ома.
 - а. определяет связь между основными электрическими величинами на участках цепи;
- b. сумма ЭДС источников питания в любом контуре равна сумме падений напряжения на элементах этого контура;
 - с. закон баланса токов в узле: сумма токов, сходящихся в узле равна нулю;
- d. энергия, выделяемая на сопротивлении при протекании по нему тока, пропорциональна произведению квадрата силы тока и величины сопротивления;
- е. мощность, развиваемая источниками электроэнергии, должна быть равна мощности преобразования в цепи электроэнергии в другие виды энергии.
 - 9. Контурная ЭДС это...
 - а. сумма ЭДС в каждом независимом контуре;
 - b. сумма сопротивлений в каждом независимом контуре;
 - с. сумма ЭДС в каждом из смежных контуров;
 - d. сумма токов, которые протекают в каждом независимом контуре;
 - е. сумма сопротивлений в каждом из смежных контуров.
 - 10. Сущность метода свертки схемы заключается в том, что он...
 - а. основан на возможности эквивалентных преобразований;
 - b. основан на эквивалентной замене элементов преобразованного участка;
 - с. основан на применении законов Кирхгофа;
 - d. основан на составлении системы уравнений;
 - е. основан на применении закона Ома.
 - 11. Физический смысл баланса мощностей...
- а. мощность, развиваемая источниками электроэнергии, должна быть равна мощности преобразования в цепи электроэнергии в другие виды энергии;
 - b. определяет связь между основными электрическими величинами на участках цепи;
- с. сумма ЭДС источников питания в любом контуре равна сумме падений напряжения на элементах этого контура;

- d. закон баланса токов в узле: сумма токов, сходящихся в узле равна нулю;
- е. энергия, выделяемая на сопротивлении при протекании по нему тока, пропорциональна произведению квадрата силы тока и величины сопротивления.
 - 12. Узел (точка) разветвления это...
 - а. точка электрической цепи, в которой соединяется три и более проводов;
 - b. совокупность устройств, предназначенных для получения электрического тока;
 - с. разность напряжений в начале и в конце линии;
 - d. ее участок, расположенный между двумя узлами;
 - е. замкнутый путь, проходящий по нескольким ветвям.
 - 13. Главное условие эквивалентного преобразования схем:...
- а. преобразование схемы, при котором токи и напряжения в непреобразованной части изменяются;
- b. преобразование схемы, при котором токи и напряжения в непреобразованной части остаются неизменными;
- с. составление и решение системы уравнений, получаемых по второму закону Кирхгофа;
 - d. преобразование схемы в соответствии с законами Кирхгофа;
- е. составление и решение системы уравнений, получаемых по первому закону Кирхгофа.
 - 14. Как определяются реальные токи на основе контурных токов? (несколько вариантов)
 - а. если в ветви проходит только один контурный ток, то реальный равен этому току;
- b. если в ветви проходит несколько контурных токов, то реальный ток равен одному из этих токов;
 - с. если в ветви проходит несколько контурных токов, то реальный ток равен их сумме;
- d. если в ветви проходит только один контурный ток, то реальный равен суме контурных токов;
- е. если в ветви проходит несколько контурных токов, то реальный ток равен их разности.
 - 15.Переменный ток это...
- а. периодический ток, все значения которого повторяются через одинаковые промежутки времени;
 - b. значение переменной величины в произвольный момент времени;
 - с. совокупность всех изменений переменной величины;
 - d. наибольшее из всех мгновенных значений изменяющейся величины за период;
- е. такой эквивалентный постоянный ток, который, проходя через сопротивление, выделяет в нем за период одинаковое количество тепла.
 - 16.Волновое (характеристическое) сопротивление это...
 - а. величина, определяемая параметрами реактивных элементов контура;
 - b. величина, определяющая его эффективность (качество);
 - с. отношение действующих значение напряжения и тока в цепи;
 - d. сопротивление индуктивности или емкости контура при резонансе;
 - е. отношение активной мощности к полной мощности.
 - 17. Амплитудное значение переменной величины это...
 - а. наибольшее из всех мгновенных значений изменяющейся величины за период;
 - b. совокупность всех изменений переменной величины;
 - с. значение переменной величины в произвольный момент времени;
- d. периодический ток, все значения которого повторяются через одинаковые промежутки времени;

- е. такой эквивалентный постоянный ток, который, проходя через сопротивление, выделяет в нем за период одинаковое количество тепла.
 - 18. Действующее значение переменной величины это...
 - а. значение переменной величины в произвольный момент времени;
 - b. совокупность всех изменений переменной величины;
- с. периодический ток, все значения которого повторяются через одинаковые промежутки времени;
 - d. наибольшее из всех мгновенных значений изменяющейся величины за период;
- е. такой эквивалентный постоянный ток, который, проходя через сопротивление, выделяет в нем за период одинаковое количество тепла.
 - 19. Добротность контура это...
 - а. величина, определяющая его эффективность (качество);
 - b. величина, определяемая параметрами реактивных элементов контура;
 - с. отношение действующих значение напряжения и тока в цепи;
 - d. сопротивление индуктивности или емкости контура при резонансе;
 - е. отношение активной мощности к полной мощности.
- 20. Как изменится емкость плоского конденсатора, если толщину его пластин увеличить в 2 раза.
 - А. Увеличится в 4 раза.
 - Б. Увеличится в 2 раза.
 - В. Уменьшится в 2 раза.
 - Г. Уменьшится в 4раза.
 - 21.От чего зависит сопротивление проводника.
 - А. От длины проводника.
 - Б. От площади поперечного сечения проводника.
 - В. От удельного сопротивления.
 - Г. От всех перечисленных параметров.
 - 22. Какое из приведенных выражений представляет собой закон Ома для полной цепи.
 - A. I=E/R
 - Б. I=E/(R+r)
 - B. I=E/(R-r)
 - Γ . I=ER/(R+r)
- 23. Электродвигатель, подключенный к сети напряжением 220 В, потребляет ток 8А. Определите мощность электродвигателя.
- 24. Два провода из одного материала имеют одинаковую длину, но разные диаметры. Какой из проводов сильнее нагреется при протекании одного и того же тока.
 - А. Провод большего диаметра.
 - Б. Провод меньшего диаметра.
 - В. Оба провода нагреваются одинаково.
 - Г. Провод большей длины
- 25. Длину и диаметр проводника увеличили в два раза. Как изменится сопротивление проводника.
 - А. Увеличится в 2 раза
 - Б. Уменьшится в 2 раза
 - В. Останется неизменным

- Г. Увеличится в 4 раза
- Д. Уменьшится в 4 раза
- 26. Чему равно эквивалентное сопротивление шести параллельно соединенных проводников, если сопротивление каждого 30 Ом.
 - А. 5 Ом Б. 180 Ом В. 50 Ом Г.18 Ом
- 27. Как называется режим, при котором сопротивление внешней цепи практически равно нулю.
 - А. Холостой ход.
 - Б. Короткое замыкание.
 - В. Рабочий режим.
 - Г. Режим согласованной нагрузки
- 28. Что происходит с сопротивлением всей электрической цепи, если сопротивление внешней цепи уменьшится.
 - А. Уменьшается.
 - Б. Увеличивается.
 - В. Остается неизменным
 - Г. Станет равным нулю
- 29. Зависит ли сопротивление медной катушки от величины приложенного к ней переменного напряжения.
 - А. Не зависит.
 - Б. Зависит линейно от частоты.
 - В. Зависит нелинейно от частоты.
 - Г. Зависит линейно от амплитуды
- 30. Как изменится емкость плоского конденсатора, если площадь его пластин сократить в 2 раза.
 - А. Увеличится в 4 раза.
 - Б. Увеличится в 2 раза.
 - В. Уменьшится в 2 раза.
 - Г. Уменьшится в 4раза.
- 31. Что происходит с сопротивлением металлических проводников при повышении температуры.
 - А. Увеличивается.
 - Б. Уменьшается.
 - В. Остается неизменным.
- 32. Какое из приведенных выражений позволяет определить напряжение на зажимах источника электрической энергии при разомкнутой цепи..
 - A. U=E-IR B. U=E-Ir B. U=Ir C. U=E
- 33. Электродвигатель, подключенный к сети напряжением 120 В, потребляет ток 7А. Определите мощность электродвигателя.
 - А. 84 Вт Б. 840 Вт В. 8,4 Вт Г. 8400 Вт
- 34. Два провода из одного материала имеют одинаковую длину, но разные диаметры. Какой из проводов сильнее нагреется при протекании одного и того же тока.
 - А. Провод большего диаметра.
 - Б. Повод меньшего диаметра.
 - В. Оба провода нагреваются одинаково.

35. Определить ток в обмотке электродвигателя мощностью 3 КВт, если он включен в сеть напряжением 120 В.

А. 2,5А Б. 12,5 А В. 25 А Г. 250 А

- 36. Чему равно эквивалентное сопротивление шести последовательно соединенных проводников, если сопротивление каждого 30 Ом.
 - А. 5 Ом Б. 180 Ом В. 50 Ом Г.18 Ом
- 37. Как называется режим, при котором сопротивление внешней цепи равно внутреннему сопротивлению генератора.
 - А. Холостой ход.
 - Б. Короткое замыкание.
 - В. Рабочий режим.
 - Г. Режим согласованной нагрузки
 - 38.От чего зависит емкость конденсатора.
 - А. От толщины диэлектрика.
 - Б. От площади обкладок конденсатора.
 - В. От диэлектрической проницаемости вещества.
 - Г. От всех перечисленных параметров.
 - 39. Определите проводимость проводника, если его сопротивление 5 Ом

Блок 2 (уметь)

```
1. u = 100\sin(wt); R = 20 Ом; Напишите выражение для тока в цепи.
```

a. $i = 5\sin(wt)$;

b. i = 5 A;

c. $i = 5\sin(wt + \pi/2)$;

d. $i = 5\sin(wt - \pi/2)$;

e. $i = 5\sin(wt+\pi)$.

- 2.Индуктивность катушки в колебательном контуре увеличилась в два раза, емкость конденсатора уменьшилась в два раза. Как изменилось волновое сопротивление контура?
 - а. Увеличилось в два раза;
 - b. Увеличилось в четыре раза;
 - с. Не изменилось;
 - d. Уменьшилось в два раза;
 - е. Уменьшилось в четыре раза.

```
3.XC = 50 \text{ Ом}; u = 50 \sin(\text{wt-}\pi/2); Напишите выражение для тока в цепи.
```

a. $i = \sin(wt)$;

b. $i = \sin(wt - \pi/2)$;

c. $i = \sin(wt + \pi/2)$;

d. $i = 1,41\sin(wt)$;

e. $i = 1,41\sin(wt+\pi)$.

- 4. В колебательном контуре резонанс напряжений при XL = Xc = 10 Ом. Определить волновое сопротивление контура.
 - а. 10 Ом;
 - b. 100 Ом;
 - с. 20 Ом;

```
е. 31,4 Ом.
      5. XL = 10 Om; u = 10 sin(wt); Напишите выражение для тока в цепи.
      a. i = \sin(wt-\pi/2);
      b. i = \sin(wt);
      c. i = 10\sin(wt-\pi/2);
      d. i = 10\sin(wt);
      e. i = 10\sin(wt + \pi/2).
      6. Индуктивность и емкость колебательного контура увеличились в четыре раза. Как
изменилось волновое сопротивление контура?
      а. Увеличилось в четыре раза;
      b. Увеличилось в два раза;
      с. Не изменилось;
      d. Уменьшилось в два раза;
      е. Уменьшилось в четыре раза.
      7. Действующее значение напряжения, приложенного к цепи, U = 100 В. Полное
сопротивление цепи 10 Ом. Определить амплитуду тока в цепи.
      a. 14,1 A;
      b. 10 A;
      c. 20 A;
      d. 1.41 A:
      e. 2 A.
      8. Действующее значение тока в цепи равно 1 А, полное сопротивление цепи 10 Ом.
Чему равна амплитуда напряжения, приложенного к цепи, и каков характер сопротивления,
если вектор напряжения отстает на \pi/2 от вектора тока?
      а. 14,1 В, емкостной;
      b. 1 B, активный;
      с. 1,41 В, индуктивный;
      d. 14,1 B, активно-индуктивный;
      е. 1,41 В, активно-емкостной.
      9. К цепи, сопротивление которой Z = 50 Ом, приложено напряжение u = 282\sin 314t В.
Определите действующее значение тока в цепи.
      a. 4 A;
      b. 14,1 A;
      c. 314 A;
      d. 28,2 A;
      e. 1,41 A.
      10. Найти волновое сопротивление контура, в котором L = 0.01 \, \Gamma \text{H}; C = 10-6 \, \Phi.
      а. 100 Ом;
      b. 100 Ом;
      с. 314 Ом:
      d. 1000 Ом;
      е. 31,4 Ом.
      11. К цепи приложено напряжение u = 141\sin 314t В. Сопротивление цепи Z = 20 Ом.
Определить действующее значение тока.
```

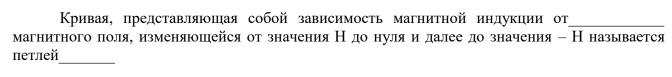
d. 200 Ом;

a. I = 5 A; b. I = 7,05 A;

```
d. I = 70.5 A;
      e.I = 1.41 A.
      12. XL = Xc = 100 Ом. Чему равно волновое сопротивление последовательного
колебательного контура?
      а. 100 Ом;
      b. 10 Ом;
      с. 1000 Ом:
      d. 10000 Ом:
      е. 314 Ом.
      13. Последовательно соединены R.L.C. L = 0.1~\Gamma H, Xc = 31.4~OM, f = 50~\Gamma H.
Выполняются ли условия резонанса?
      а. да;
      b. нет;
      с. Приведенных данных недостаточно для ответа на вопрос;
      d. Выполняются при условии, что R << Xc;
      е. Выполняются при условии, что R >> Xc.
      14. Емкость конденсатора в колебательном контуре увеличилась в четыре раза. Как
изменилось волновое сопротивление колебательного контура?
      а. Уменьшилось в два раза;
      b. Увеличилось в четыре раза;
      с. Увеличилось в два раза;
      d. Уменьшилось в четыре раза;
      е. Не изменилось.
      15.Определите ЭДС элемента питания, если его внутреннее сопротивление 0,5 Ом,
сопротивление внешней цепи 7,5 Ом и ток в цепи 0,25 А.
      16. Определите емкость батареи конденсатора, состоящую из четырех последовательно
соединенных конденсаторов, емкость каждого равна 40 мкФ.
      17. Определить силу тока в проводнике, расположенном перпендикулярно магнитным
линиям равномерного магнитного поля, если магнитная индукция равна 1Тл, рабочая длина
проводника 0,2м и поле действует на него с силой 3Н.
      18. Вставить пропущенные слова.
      Электромагнитная _____
                                       это явление возникновения в контуре при
изменении пронизывающего контур магнитного поля.
      19. Кислотный аккумулятор с эдс 2,5В и внутренним сопротивлением 0,2 Ом замкнут на
потребитель с сопротивлением 2,6 Ом. Определить ток в цепи.
```

20.КПД двигателя равен 84%, потребляемая им мощность 8,5 КВт. Какова мощность,

21. Вычислить рабочую длину проводника, помещенного в равномерное магнитное


поле перпендикулярно магнитным линиям, если магнитная индукция 0,8 Тл, сила тока в

23. Вставьте пропущенные слова

проводнике 0,25А и проводник выталкивается из поля с силой 0,4 Н.

отдаваемая двигателем.

c. I = 14.1 A;

- 24. Определить сопротивление резистора RX, если мост уравновешен (показание гальванометра равно нулю) при: R1 = 125 Ом, R2 = 250 Ом, R3 = 75 Ом.
 - 1. $RX = 125 O_M$. 2. $RX = 150 O_M$.
- 3. $RX = 250 O_{M}$.
- 4. $RX = 75 O_{M}$.
- 25. Как изменятся показания приборов, если уменьшить число витков первичной обмотки трансформатора.
 - 1. І1 Увеличиться.
 - 2. І2 Увеличиться.
 - 3. U2 Увеличиться.
 - 4. Р Уменьшится.
- 26. Если напряжения на трех последовательно соединенных резисторах относятся как 1:2:4, то отношение сопротивлений резисторов...
 - а) равно 1:1/2:1/4
 - б) равно 4:2:1
 - в) равно 1:4:2
 - г) подобно отношению напряжений 1:2:4
- 27. Определите, при каком соединении (последовательном или параллельном) двух одинаковых резисторов будет выделяться большее количество теплоты и во сколько раз ...
 - а) при параллельном соединении в 4 раза
 - б) при последовательном соединении в 2 раза
 - в) при параллельном соединении в 2 раза
 - г) при последовательном соединении в 4 раза
- 28. В цепи параллельно соединены сопротивления R1=30 Ом, R2=60 Ом, R3=120 Ом, ток в первой ветви I1=4 А. Тогда ток I и мощность P равны...
 - a) I = 9 A; P = 810 BT
- б) I = 8 A; P = 960 Вт
- B) I = 7 A; P = 540 BT
- Γ) I = 7 A; P = 840 BT
- 29. Эквивалентное сопротивление участка цепи, состоящего из трех параллельно соединенных сопротивлений номиналом 1 Ом, 10 Ом, 1000 Ом, равно...
 - а) 1011 Ом б) 0,9 Ом в) 1000 Ом г) 1 Ом
- 30.~B цепи параллельно соединены сопротивления R1=45 Ом, R2=90 Ом, R3=30 Ом, ток в первой ветви I1=2 А. Тогда ток I и мощность P цепи соответственно равны...
 - a) I = 7 A; P = 840 Bt 6 I = 9 A; P = 810 Bt
 - в) I = 6 A; P = 960 Bт г) I = 6A; P = 540 Bт
- 31. Провода одинакового диаметра и длины из разных материалов при одном и том же токе нагреваются следующим образом...
 - а) самая высокая температура у медного провода
 - б) самая высокая температура у алюминиевого провода
 - в) провода нагреваются одинаково
 - г) самая высокая температура у стального провода
- 32. Пять резисторов с сопротивлениями R1=100 Ом, R2=10 Ом, R3=20 Ом, R4=500 Ом, R5=30 Ом соединены параллельно. Наибольший ток будет наблюдаться...
 - a) в R2
- б) в R4
- в) во всех один и тот же
- г) в R1 и R5

				чены параллельно к источнику ЭДС. Если R= 30
Ом, а		сила тока чере		
	a) 1,5 A	б) 2 A	в) 0,67 A	r) 0,2/A
	Блок 3 (вла	деть)		
посто	1. Одно из оянного тока.		достоинств це	епей переменного тока по сравнению с цепями
	а. Возможн	ость изменени	я тока в цепи	с помощью трансформатора;
				чи на близкие расстояния;
		-		чи на дальние расстояния;
				ооэнергии в тепловую и механическую;
	е. Возможн	ость изменени	я напряжения	в цепи с помощью трансформатора.
	2. Чему ра	вно отношени	е напряжений	й на зажимах первичной и вторичной обмоток?
	а. Отношен	нию чисел витк	ов обмоток;	
		сит от констру		
	1	кенно отношен		
		ения задачи не		·
	е. Это зави	сит от схемы с	оединения об	моток.
= 0,5		ить значение в	соэффициента	трансформации, если $U1 = 200 \text{ B}$; $P = 1 \text{ кBT}$; $I2$
,	a. $k \approx 10$;			
	b. $k \approx 0.1$;			
	с. Для реше	ения задачи не	достаточно да	инных;
	d. $k = 10$;			
	e. $k = 0,1$.			
	4 Какие	кпеммы лопж	ны быть по	дключены к питающей сети у понижающего
транс	сформатора?	клемиы долж	nibi obitb no,	disho lehin ka imrulomen eema ya homikulomero
-	a. A, B, C;			
	b. a, b, c;			
	c. 0, a, b, c;			
	d. A, b, c;			
	e. 0, A, B, C	C.		
	5. При ка	COM HOURSTON	ии пелесообт	разно: А) передавать энергию? Б) потреблять
энері	-	ком напряжен	ии целесооор	азно. А) передавать энергию: В) потреолять
энері		сом, Б) низком;		
		м, Б) высоком		
		яется характер		
	-	ком, Б) высоко		
	е. А) низко	м, Б) низком.		
	6 Mover	пи папражен	ue na sawum	ах вторичной обмотки превышать: А) ЭДС
пепв		ли напряжен ки Б) ЭДС втор		
перы		г, Б) не может;	m mon comon	ur.
	b. Может;	, _ ,		
	с. Не може	т;		
		жет, Б) может;		
	е. Определя	яется схемой с	оединения об	моток.

- 7. Ток во вторичной обмотке трансформатора увеличился в два раза. Как изменятся потери энергии в первичной обмотке?
 - а. Уменьшатся в два раза;
 - b. Не изменятся;
 - с. Увеличатся в два раза;
 - d. Увеличатся в четыре раза;
 - е. Немного уменьшатся.
 - 8. Какое равенство несправедливо при холостом ходе трансформатора?
 - a. $E2 \approx U2$:
 - b. U2 /U1≈k;
 - c. $\omega 2 / \omega 1 = k$;
 - d. I1 /I2 \approx k;
 - e. $\omega 2 / \omega 1 \approx k$.
- 9. Ток нагрузки трансформатора увеличился в полтора раза. Как изменится магнитный поток в сердечнике трансформатора?
 - а. Уменьшится в полтора раза;
 - b. Увеличится в полтора раза;
 - с. Увеличится в три раза;
 - d. Не изменится;
 - е. Уменьшится в три раза.
- 10. Число витков в каждой фазе первичной обмотки 1000, в каждой фазе вторичной обмотки 200. Линейное напряжение питающей цепи 1000 В. Определить линейное напряжение на выходе трансформатора, если обмотки соединены по схеме «звезда треугольник».
 - a. $200/\sqrt{3}$ B;
 - b. 200 B:
 - c. 5000 B;
 - d. $1000/\sqrt{3}$ B;
 - e.200 $\sqrt{3}$ B.
- 11. Потери в магнитопроводе равны нулю. Будет ли протекать ток через обмотку катушки?
 - а. Будет протекать переменный ток;
 - b. He будет;
 - с. Будет протекать ток намагничивания;
 - d. Для решения задачи недостаточно данных;
 - е. Это зависит от характера тока.
- 12. Как изменится магнитный поток в сердечнике трансформатора при увеличении тока нагрузки в три раза?
 - а. Уменьшится в три раза;
 - b. Не изменится;
 - с. Увеличится в три раза;
 - d. Увеличится незначительно;
 - е. Уменьшится незначительно.
- 13. ЭДС первичной обмотки трансформатора 10 В, вторичной 130 В. Число витков первичной обмотки 20. определить число витков вторичной обмотки.
 - a. 260;
 - b. 2;
 - c. 13;

- d. 200;
- e. 20.
- 14. Однофазный трансформатор подключен к сети 220 В. Потребляемая мощность 2,2 кВт. Ток вторичной обмотки 2,5 А. Найти коэффициент трансформации. а. $k \approx 4$;
 - b. $k \approx 2$;
 - c. $k \approx 3$;
 - d. $k \approx 5$;
 - e. $k \approx 2.5$.
 - 15. На каком законе основан принцип действия трансформатора?
 - а. На законе электромагнитной индукции;
 - b. На законе Ампера;
 - с. На принципе Ленца;
 - d. На правиле буравчика.
 - е. На законе Ома.
- 16. Мощность на входе трансформатора 10 кВт; на выходе -9.7 кВт. Определить КПД трансформатора.
 - a. 0,97;
 - b. 97 %;
 - c. 0.99;
 - d. Задача не определена, так как не задан коэффициент трансформации;
 - e.0.98.
- 17. Выбрать из представленных выражений формулу определяющую КСВ линии с распределенными параметрами.
- 18. Вычислить резонансную частоту последовательного колебательного контура, если при частоте 500Γ ц при XL=40 Ом, Xc=0,5Ом.
- 19. Вычислить резонансную частоту параллельного колебательного контура, если при частоте 5000Γ ц при XL=70 Ом, Xc=10,5Ом.
- 20. Графическим методом определить входной ток по BAX двух параллельно соединенных нелинейных элементов при известном напряжении U=2B.
- 21. Выбрать формулу описывающую второй закон Кирхгофа для левого контура разветвленной магнитной цепи (рис).
 - 22. Выбрать из представленных формул выражение описывающее закон полного тока.
- 23. Индуктивность контура L=150 мГн. Для настройки последовательного колебательного контура на резонансную частоту 2000 Гц конденсатор какой емкости необходимо подключить.
- 24. Относительно устройства асинхронного двигателя с короткозамкнутым ротором неверным является утверждение, что...
 - а) обмотки статора и ротора не имеют электрической цепи
- б) ротор имеет обмотку, состоящую из медных или алюминиевых стержней, замкнутых накоротко торцевыми кольцами
 - в) цилиндрический сердечник ротора набирается из отдельных листов электрической цепи
 - г) статор выполняется сплошным, путем отливки

- 25. Если номинальная частота вращения асинхронного двигателя составляет, то частота вращения магнитного поля статора составит...
 - а) 3000 об/мин б) 750 об/мин в) 600 об/мин г) 1500 об/мин
- 26. Если номинальная частота вращения асинхронного двигателя составляет nн=720 об/мин, то частота вращения магнитного поля статора составит...
 - а) 1500 об/мин б) 3000 об/мин в) 600 об/мин г) 750 об/мин
 - 27. Асинхронной машине принадлежат узлы...
- а) статор с трехфазной обмоткой, неявнополюсный ротор с двумя контактными кольцами
 - б) статор с трехфазной обмоткой, якорь с коллектором
 - в) статор с трехфазной обмоткой, явнополюсный ротор с двумя контактными кольцами
- г) статор с трехфазной обмоткой, ротор с короткозамкнутой обмоткой, ротор с трехфазной обмоткой и тремя контактными кольцами
- 28. Направление вращения магнитного поля статора асинхронного двигателя зависит от...
 - а) величины подводимого напряжения
 - б) частоты питающей сети
 - в) порядка чередования фаз обмотки статора
 - г) величины подводимого тока
- 29. Если при токе I=5,25 A напряжение на нелинейном элементе U=105 B, а при возрастании тока на I=0,5 A, напряжение будет равно115 B, то дифференциальное сопротивление элемента составит...
 - а) -40 Ом б) 20 Ом . в) -20 Ом г) 40 Ом
- 30. Вольт-амперные характеристики нелинейных элементов заменяют ломанной, состоящей из отрезков прямых при расчёте...
 - а) методом гармонического баланса
 - б) методом кусочно-линейной аппроксимации
 - в) численным методом последовательных интервалов
 - г) графическим методом
- 31. Если сопротивление элемента зависит от тока или приложенного напряжения, то такой элемент называется...
 - а) нелинейным б) пассивным в) линейным г) активным
- 32. Электрическая цепь, у которой электрические напряжения и электрические токи связаны друг с другом нелинейными зависимостями, называется
 - а) линейной электрической цепью
 - б) принципиальной схемой
 - в) нелинейной электрической цепью
 - г) схемой замещения
- 33. Для параллельно соединенных R, L, C элементов, при R=XL=2XC, угол сдвига фаз между током и напряжением на входе цепи равен...
 - а) 0 б) -45° в) 45° г) 90°
- 34. Цепь состоит из последовательно соединенных элементов R, L,C. Если R=50 Ом; L=0,2 Γ н; C=5 мк Φ , то резонансная частота wp контура равна, Γ ц...
 - а) 250 б) 134 в) 4000 г) 1000

- 35. Резистор с активным сопротивлением R=10 Ом, конденсатор емкостью C=10 мкФ и катушка с индуктивностью L=100 мГн соединены последовательно. Тогда полное сопротивление цепи Z при резонансе напряжений равно...
 - a) Z=10 Ом б) Z=200 Ом в) Z=100 Ом г) Z=210 Ом
- 36. Если напряжение на зажимах контура U=20~B, то ток при резонансе в последовательной цепи с параметрами: $R=10~Om,~L=1~m\Gamma h,~C=1~m\kappa\Phi$ равен...
 - а) 2 Аб) 1 Ав) 2,5 Аг) 0,5 А
- 37. При напряжении $u(t)=100\sin(314t)$ В начальная фаза тока i(t) в ёмкостном элементе С составит...
 - а) 90 ° б) -45 ° в) 0 г) 135 °
- 38.~B цепи последовательно включены сопротивления R1=10~Om,~R2=20~Om,~R3.~Hапряжение источника U=100~B и мощность P=200~Bт всей цепи. Мощность P2~Bторого резистора будет равна...
 - а) 30 Вт б) 25 Вт в) 80 Вт г) 125 Вт
- 39. Цепь состоит из последовательно соединенных катушки индуктивности с индуктивным сопротивлением XL=40 Ом, и резистором R=30 Ом. Если амперметр, реагирующий на действующее значения измеряемой величины, показывает 2A, то реактивная мощность Q цепи составляет...
 - a) 120 BAp б) 280 BAp в) 160 BAp г) 140 Bap
- 40. В цепи параллельно соединены сопротивления R1=30 Ом, R2=60 Ом, R3=120 Ом, ток в первой ветви I1=4 А. Тогда ток I и мощность P равны...
 - a) I = 9 A; P = 810 BT
- 6) I = 8 A; P = 960 Вт
- в) I = 7 A; P = 540 Вт
- Γ) I = 7 A; P = 840 BT
- 41. Провода одинакового диаметра и длины из разных материалов при одном и том же токе нагреваются следующим образом...
 - а) самая высокая температура у медного провода
 - б) самая высокая температура у алюминиевого провода
 - в) провода нагреваются одинаково
 - г) самая высокая температура у стального провода
- 42. Пять резисторов с сопротивлениями R1=100 Ом, R2=10 Ом, R3=20 Ом, R4=500 Ом, R5= 30 Ом соединены параллельно. Наибольший ток будет наблюдаться...
 - a) в R2
- б) в R4
- в) во всех один и тот же
- г) в R1 и R5
- 43. Асинхронный двигатель, подключенный к сети с f = 50 Γ ц, вращается с частотой 1450 об/мин. Скольжение S равно...

Методические материалы, характеризующих процедуры оценивания

Индивидуальный семестровый рейтинг студента формируется на основе действующего в ВУЗе Положения "О проведении текущего контроля успеваемости и промежуточной аттестации обучающихся".

В течение семестра студент получает баллы успеваемости за выполнение всех видов учебных поручений: посещение лекций, выполнение практических работ, РГР, прохождение тестирования на информационном - образовательном портале МИ ВлГУ. На основе фонда оценочных средств программным комплексом информационно-образовательного портала МИ ВлГУ формируются в автоматическом режиме тестовые задания для контроля знаний

студентов. Результатом тестирования является процент правильных ответов, с учетом индивидуального семестрового рейтинга студента формируется итоговая оценка. Дифференцированный зачет выставляется по итогам прохождения теста промежуточного контроля знаний и набранного семестрового рейтинга.

Максимальная сумма баллов, набираемая студентом по дисциплине равна 100.

Оценка в баллах	Оценка по шкале	Обоснование	Уровень сформированности компетенций
Более 80	«Отлично»	Содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному	Высокий уровень
66-80	«Хорошо»	Содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками	Продвинутый уровень
50-65	«Удовлетворительно»	Содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки	Пороговый уровень
Менее 50	«Неудовлетворительно»	Содержание курса не освоено, необходимые практические навыки работы не сформированы, выполненные учебные задания содержат грубые ошибки	Компетенции не сформированы

3. Задания в тестовой форме по дисциплине

Примеры заданий:

Какой из проводов одинаковой длины из одного и того же материала, но разного диаметра, сильнее нагревается при одном и том же токе?

- Проводники не нагреваются от электрического тока
- Сильнее нагревается провод с меньшим диаметром
- Оба провода нагреваются одинаково
- Сильнее нагревается провод с большим диаметром

Что означает аббревиатура PEN в системе заземления согласно международному обозначению проводников?

- Изолирующий проводник
- Нулевой рабочий проводник
- Нулевой защитный проводник
- Нулевой проводник
- Фазовый проводник
- Совмещенный нулевой защитный и нулевой рабочий проводники

Как изменится напряжение на входных зажимах электрической цепи постоянного тока с активной нагрузкой, если параллельно подключить еще одного потребителя?

- уменьшится прямо пропорционально подключенной нагрузке
- уменьшится обратно пропорционально подключенной нагрузке
- увеличится в два раза
- не изменится
- увеличится прямо пропорционально подключенной нагрузке
- увеличится обратно пропорционально подключенной нагрузке
- уменьшится в два раза

Первичная обмотка однофазного трансформатора имеет 100 витков, а вторичная - 5 витков. Напряжение на входе трансформатора 220 В. Чему равно напряжение на выходе трансформатора (В)?

Напряжение на зажимах контура U=20~B последовательной RLC цепи с параметрами: $R=10~Om, L=1~m\Gamma h, C=1~m\kappa\Phi$. Чему равен ток (A) при резонансе?

Цепь состоит из последовательно соединенных элементов R, L,C. Если R=50 Ом; L=0,2 Γ н; C=5 мкФ. Чему равна резонансная частота fp контура (Γ ц)?

Полный перечень тестовых заданий с указанием правильных ответов, размещен в банке вопросов на информационно-образовательном портале института по ссылке https://www.mivlgu.ru/iop/question/edit.php?courseid=162

Оценка рассчитывается как процент правильно выполненных тестовых заданий из их общего числа.