Министерство науки и высшего образования Российской Федерации

Муромский институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИ ВлГУ)

Кафедра ПИн

«УТВЕРЖДАЮ»
Заместитель директора по УР
Д.Е. Андрианов
23.05.2023

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Разработка и реализация сетевых протоколов

Направление подготовки 09.04.04 Программная инженерия

Профиль подготовкиТехнологии разработки интеллектуальных систем

Семестр	Трудоем- кость, час./зач. ед.	Лек- ции, час.	Практи- ческие занятия, час.	Лабора- торные работы, час.	Консуль- тация, час.	Конт- роль, час.	Всего (контак- тная работа), час.	СРС, час.	Форма промежу- точного контроля (экз., зач., зач. с оц.)
1	144 / 4	12		16	3,2	0,35	31,55	85,8	Экз.(26,65)
Итого	144 / 4	12		16	3,2	0,35	31,55	85,8	26,65

1. Цель освоения дисциплины

Целями освоения дисциплины является освоение теоретических знаний в области предназначения и использования сетевых протоколов и сформировать навыки реализации сетевых протоколов.

Задачи дисциплины:

- дать общие сведения об алгоритмах работы основных сетевых протоколов;
- освоение студентами классификации протоколов, их архитектуры, областей применения;
 - познакомить с требованиями, предъявляемыми к сетевым протоколам;
- познакомить с технологиями, используемыми при разработке и реализации сетевых протоколов.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Разработка и реализация сетевых протоколов» базируется на знании дисциплин направлению подготовки 09.03.04 «Сети и системы телекоммуникации», «Операционные системы» и др. На дисциплине «Разработка и реализация сетевых протоколов» базируется изучение дисциплин: «Защищенные информационные системы» и др. Изучение дисциплины «Разработка и реализация сетевых протоколов» является базой для дальнейшего освоения студентами дисциплин направления «Программная инженерия» и для прохождения практики и занятиям научно-исследовательской работы. Знания, умения и навыки, приобретенные при изучении данной дисциплины, используются при написании магистерской диссертации.

3. Планируемые результаты обучения по дисциплине

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

Формируемые	Планируемые результаты о	обучения по дисциплине, в	
компетенции (код,	соответствии с индикаторо	Наименование оценочного	
содержание	Индикатор достижения	Результаты обучения по	средства
компетенции)	компетенции	дисциплине	
УК-2 Способен	УК-2.1 Разрабатывает	Знать методы разработки	тест
управлять проектом	проект с учетом анализа	проектов с учетом анализа	
на всех этапах его	альтернативных вариантов	альтернативных вариантов	
жизненного цикла	его реализации, определять	его реализации,	
	целевые этапы, основные	определения целевых	
	направления работ	этапов, основных	
		направлений работ (УК-	
		2.1)	
		Уметь реализовывать	
		методы разработки	
		проектов с учетом анализа	
		альтернативных вариантов	
		его реализации,	
		определения целевых	
		этапов, основных	
		направлений работ (УК-	
		2.1)	
ОПК-5 Способен	ОПК-5.1 Контролирует	Знать методы контроля	тест
разрабатывать и	версии программного	версий программного	
модернизировать	обеспечения в	обеспечения в	
программное и	соответствии с	соответствии с	
аппаратное	регламентом и выбранной	регламентом и выбранной	
обеспечение	системой контроля версий	системой контроля версий	
информационных и		(ОПК-5.1)	
автоматизированных		Уметь реализовывать	
систем		методы контроля версий	

		программного обеспечения	
		в соответствии с	
		регламентом и выбранной	
		системой контроля версий	
		(ОПК-5.1)	
		Владеть навыками	
		контроля версии	
		программного обеспечения	
		в соответствии с	
		регламентом и выбранной	
		системой контроля версий	
		(ОПК-5.1)	
ПК-2 Владение	ПК-2.1 Реализует методы и	Знать методы и	тест
методами	программные интерфейсы	программные интерфейсы	
программной	взаимодействия с	взаимодействия с	
реализации	внешними программными	внешними программными	
распределенных	компонентами	компонентами (ПК-2.1)	
информационных		Уметь реализовывать	
систем		методы и программные	
		интерфейсы	
		взаимодействия с	
		внешними программными	
		компонентами (ПК-2.1)	

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 4 зачетные единицы, 144 часа.

4.1. Форма обучения: очная

Уровень базового образования: высшее. Срок обучения 2г.

4.1.1. Структура дисциплины

№	Раздел (тема) дисциплины	стр	Контактная работа обучающихся с педагогическим работником							ьная работа	Форма текущего контроля успеваемости (по неделям семестра), форма
п/п		Семестр	Лекции	Практические занятия	Лабораторные работы	Контрольные работы	KII / KP	Консультация	Контроль	Самостоятельная работа	семестра), форма промежуточной аттестации(по семестрам)
1	Протоколы локальных сетей	1	4		4					15	тестирование
2	Протоколы глобальных сетей	1	4		4					23	тестирование
3	Протоколы пиринговых сетей	1	2		4					25	тестирование
4	Способы реализации протоколов	1	2		4					22,8	тестирование
Всего за семестр		144	12		16			3,2	0,35	85,8	Экз.(26,65)
Итого		144	12		16			3,2	0,35	85,8	26,65

4.1.2. Содержание дисциплины 4.1.2.1. Перечень лекций

Семестр 1

Раздел 1. Протоколы локальных сетей

Лекция 1.

Типы протоколов (2 часа).

Лекпия 2.

Характеристики протоколов локальной сети (2 часа).

Раздел 2. Протоколы глобальных сетей

Лекция 3.

Протоколы глобальной сети (2 часа).

Лекция 4.

Протокол ATM. Протокол OpenFlow. Протокол Mobile IP (2 часа).

Раздел 3. Протоколы пиринговых сетей

Лекция 5.

Протокол пиринговой сети Р2Р (2 часа).

Раздел 4. Способы реализации протоколов

Лекция 6.

Спецификация протоколов ЈХТА (2 часа).

4.1.2.2. Перечень практических занятий

Не планируется.

4.1.2.3. Перечень лабораторных работ

Семестр 1

Раздел 1. Протоколы локальных сетей

Лабораторная 1.

Блокирующие дейтаграммные сокеты (4 часа).

Раздел 2. Протоколы глобальных сетей

Лабораторная 2.

Блокирующие потоковые сокеты (4 часа).

Раздел 3. Протоколы пиринговых сетей

Лабораторная 3.

Неблокирующие сокеты (4 часа).

Раздел 4. Способы реализации протоколов

Лабораторная 4.

Многоадресная рассылка (multicast) (4 часа).

4.1.2.4. Перечень тем и учебно-методическое обеспечение самостоятельной работы

Перечень тем, вынесенных на самостоятельное изучение:

- 1. Производительность сетевого оборудования.
- 2. Сниффинг сети на концентраторах и коммутаторах.
- 3. Стандартные стеки протоколов.
- 4. Средства управления сетью и мониторинга сети: CommView, Ethereal, ping, tracert.
- 5. Программные средства моделирования сетей NetCracker.
- 6. Адресация в сетях.
- 7. Сетевая безопасность: firewall, аппаратно-программные средства защиты на примере Patch View, основные ГОСты.
- 8. Системы сотовой связи.
- 9. Технологии семейства xDSL.
- 10. Уровни сетевой архитектуры. Эталонная модель OSI. Интерфейсы, протоколы, стеки протоколов. Стандартные сетевые протоколы.
- 11. Назначение пакетов и их структура. Адресация пакетов. Метод дейтаграмм. Метод с логическим соединением.
- 12. Стек TCP/IP. Адресация в IP-сетях. Типы адресов. Отображение физических адресов в IP-адреса. Протоколы ARP и RARP. Маршрутизация с помощью IP-пакетов. Протокол обмена управляющими сообщениями ICMP.
- 13. Стек TCP/IP. Отображение символьных адресов в IP-адреса. Служба DNS.
- 14. Автоматизация процесса назначения ІР-адресов узлам сети. Протокол DHCP.
- 15. Стек ТСР/ІР. Протокол межсетевого взаимодействия ІР.
- 16. Стек ТСР/ІР. Протокол надёжной доставки сообщений ТСР.
- 17. Стек TCP/IP. Протокол доставки пользовательских дейтаграмм UDP.
- 18. Стек ІРХ/ЅРХ.
- 19. Стек NetBIOS/SMB.
- 20. Широковещательная и групповая адресация сетевых структур.
- 21. Протокол управления сетью SNMP.

- 22. Управление группами Internet. Протокол IGMP.
- 23. Протоколы удаленных терминалов Telnet и Rlogin.
- 24. Протокол удаленной загрузки ВООТР.
- 25. Протокол передачи гипертекста НТТР.
- 26. Сбор данных статистики с интернет порталов.

Для самостоятельной работы используются методические указания по освоению дисциплины и издания из списка приведенной ниже основной и дополнительной литературы.

4.1.2.5. Перечень тем контрольных работ, рефератов, ТР, РГР, РПР Не планируется.

4.1.2.6. Примерный перечень тем курсовых работ (проектов) Не планируется.

5. Образовательные технологии

В рамках изучения дисциплины используются интерактивные технологии преподавания, выраженные в виде совместных обсуждений проблемных ситуаций, совместного анализа путей решения поставленных задач. В рамках выполнения лабораторных и практических работ формируются небольшие коллективы из студентов для совместного решения задач. Результаты работы отдельных коллективов обсуждаются всей группой, при этом используются средства мультимедийной техники.

Преподаватель выступает в роли координатора работы коллективов студентов, дает оценку их работе

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины. Фонды оценочных материалов (средств) приведены в приложении.

7. Учебно-методическое и информационное обеспечение дисциплины.

7.1. Основная учебно-методическая литература по дисциплине

- 1. Берлин, А. Н. Абонентские сети доступа и технологии высокоскоростных сетей: учебное пособие / А. Н. Берлин. 3-е изд. Москва: Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2021. 276 с. ISBN 978-5-4497-0851-9. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: https://www.iprbookshop.ru/101985.html . Режим доступа: для авторизир. пользователей https://www.iprbookshop.ru/101985.html
- 2. Беспроводные сети Wi-Fi : учебное пособие / А. В. Пролетарский, И. В. Баскаков, Д. Н. Чирков [и др.]. 3-е изд. Москва, Саратов : Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2020. 284 с. ISBN 978-5-4497-0305-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/89422.html. Режим доступа: для авторизир. пользователей https://www.iprbookshop.ru/89422.html
- 3. Берлин, А. Н. Высокоскоростные сети связи : учебное пособие / А. Н. Берлин. 3-е изд. Москва, Саратов : Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2020. 451 с. ISBN 978-5-4497-0316-3. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: https://www.iprbookshop.ru/89433.html. Режим доступа: для авторизир. пользователей https://www.iprbookshop.ru/89433.html

7.2. Дополнительная учебно-методическая литература по дисциплине

- 1. Платунова С. М, Елисеев И.В., Авксентьева Е.Ю. Ethernet switches L2&L3. Проектирование, настройка, диагностика сетей передачи данных: Учебное пособие Санкт-Петербург: НИУ ИТМО, 2018. https://books.ifmo.ru/file/pdf/2382.pdf
- 2. Алиев Т.И., Соснин В.В., Шинкарук Д.Н. Компьютерные сети и телекоммуникации: задания и тесты: Учебно-методическое пособие Санкт-Петербург: Университет ИТМО, 2018. 112 с. https://books.ifmo.ru/file/pdf/2275.pdf

7.3. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

- В образовательном процессе используются информационные технологии, реализованные на основе информационно-образовательного портала института (www.mivlgu.ru/iop), и инфокоммуникационной сети института:
 - предоставление учебно-методических материалов в электронном виде;
- взаимодействие участников образовательного процесса через локальную сеть института и Интернет;
- предоставление сведений о результатах учебной деятельности в электронном личном кабинете обучающегося.

Информационные справочные системы:

Электронная библиотечная система "BOOK.ru" (http://book.ru);

Электронная библиотечная системы "IPRBooks" (http://www.iprbookshop.ru);

Электронная библиотечная система "iBooks.ru" (http://www.ibooks.ru);

Microsoft Developer Network (https://msdn.microsoft.com/ru-ru/default.aspx).

Программное обеспечение:

LibreOffice (Mozilla Public License v2.0)

7-Zip (GNU LGPL)

Microsoft Visual Studio (Программа Microsoft Azure Dev Tools for Teaching (Order Number: IM126433))

7.4. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

iprbookshop.ru books.ifmo.ru book.ru); iprbookshop.ru); ibooks.ru); mivlgu.ru/iop

8. Материально-техническое обеспечение дисциплины

Лаборатория системного и прикладного программирования

6 шт. компьютеров Intel Core i5, 3500 MHz/ O3У 6Gb/ SSD-512Gb/ LG 22'; 6 шт. персональных компьютеров Digitech (комплект2) Intel Core i5 3000 MHz/ DDR-4 12Gb/ SSD-512Gb/ Philips 21eb; проектор NEC V300X 3D; экран проекционный настенный Lumien Master Picture; маршрутизатор Gigabit Switch TEG-S16S; макет системы мобильного мониторинга; лабораторный стенд для изучения микроконтроллера; роботизированная платформа IE-POP-BOT; аппаратно-программный комплекс «Изучение принципов построения и исследования инфокоммутационных локальных сетей». Маркерная доска. Доступ к сети Интернет.

9. Методические указания по освоению дисциплины

Для успешного освоения теоретического материала обучающийся: знакомится со списком рекомендуемой основной и дополнительной литературы; уточняет у преподавателя,

каким дополнительным пособиям следует отдать предпочтение; ведет конспект лекций и прорабатывает лекционный материал, пользуясь как конспектом, так и учебными пособиям

До выполнения лабораторных работ обучающийся изучает соответствующий раздел теории. Перед занятием студент знакомится с описанием заданий для выполнения работы, внимательно изучает содержание и порядок проведения лабораторной работы. Лабораторная работа проводятся в компьютерном классе. Обучающиеся выполняют индивидуальную задачу компьютерного моделирования в соответствии с заданием на лабораторную работу. Полученные результаты исследований сводятся в отчет и защищаются по традиционной методике в классе на следующем лабораторном занятии. Необходимый теоретический материал, индивидуальное задание, шаги выполнения лабораторной работы и требование к отчету приведены в методических указаниях, размещенных на информационнообразовательном портале института.

Самостоятельная работа оказывает важное влияние на формирование личности будущего специалиста, она планируется обучающимся самостоятельно. Каждый обучающийся самостоятельно определяет режим своей работы и меру труда, затрачиваемого на овладение учебным содержанием дисциплины. Он выполняет внеаудиторную работу и изучение разделов, выносимых на самостоятельную работу, по личному индивидуальному плану, в зависимости от его подготовки, времени и других условий.

Форма заключительного контроля при промежуточной аттестации — экзамен. Для проведения промежуточной аттестации по дисциплине разработаны фонд оценочных средств и балльно-рейтинговая система оценки учебной деятельности студентов. Оценка по дисциплине выставляется в информационной системе и носит интегрированный характер, учитывающий результаты оценивания участия студентов в аудиторных занятиях, качества и своевременности выполнения заданий в ходе изучения дисциплины и промежуточной аттестации.

Программа составлена в соответствии с требо	ваниями ФГОС ВО по направлению
09.04.04 Программная инженерия и профилю и	подготовки Технологии разработки
интеллектуальных систем	
Рабочую программу составил к.т.н., Астафьев А.В	
Программа рассмотрена и одобрена на заседании	кафедры ПИн
протокол № 13 от 05.05.2023 года.	
Заведующий кафедрой ПИн Жизн	няков $A.\mathcal{J}$.
(Подпись)	
Рабочая программа рассмотрена и одобрена комиссии факультета	на заседании учебно-методической
протокол № 9 от 19.05.2023 года.	
Председатель комиссии ФИТР	Рыжкова М.Н.
(Подпись)	(Ф.И.О.)

Фонд оценочных материалов (средств) по дисциплине

Разработка и реализация сетевых протоколов

1. Оценочные материалы для проведения текущего контроля успеваемости по дисциплине

Примерные список вопросов:

- 1. Сеть Интернет и история ее создания. Что понимают под структурой сети Интернет? Пример фрагмента сети Интернет. Понятие мультимедиа.
- 2. Семиуровневая модель OSI (ЭМВОС). Характеристика уровней модели протоколов OSI.
- 3. Семиуровневая модель OSI (ЭМВОС). Физический и канальный уровни модели OSI. Основные протоколы.
- 4. Семиуровневая модель OSI (ЭМВОС). Сетевой и транспортный уровни модели OSI. Основные протоколы.
- 5. Семиуровневая модель OSI (ЭМВОС). Сеансовый, представительский и прикладной уровни модели OSI. Основные протоколы.
- 6. Стек протокола TCP/IP. Характеристика уровней модели протоколов TCP/IP (модель DoD). Сравнение моделей TCP/IP и ЭМВОС.
- 7. Структура стека протоколов TCP/IP. Основные протоколы семейства TCP/IP. Пример передачи сообщений в сети Интернет на основе механизма инкапсуляции.
 - 8. Адресация на канальном уровне модели OSI. MAC-адрес. Адреса EUI-48 и EUI-64.
- 9. Протокол межсетевого взаимодействия IP. Структура IP-пакета. Заголовок IPv4 и характеристика его полей. Алгоритм расчета контрольной суммы заголовка IP.
- 10. Адресация в IP-сетях. Типы адресов стека TCP/IP. Сетевой (IP-адрес) версии IPv4. Примеры.
- 11. Адресация в IP-сетях. Классовая адресация IPv4. Примеры адресов. Специальные адреса. Недостатки классовой адресации.
- 12. Адресация в IP-сетях. Бесклассовая адресация IPv4. Понятие маски подсети. Пример разбиения сети на подсети.
- 13. Локальные адреса IPv4. Методы доступа в сеть Интернет из локальной сети. Прокси-сервер. Трансляция сетевых адресов (NAT). Сетевой туннель.
- 14. Сетевой протокол IPv6. Формат пакета IPv6 и его сравнение с пакетом IPv4. Расширенные заголовки IPv6. Фрагментация в IPv6.
- 15. Сетевой (IP-адрес) версии IPv6. Структура адреса и формат записи адреса IPv6. Типы IPv6-адресов.
 - 16. Сетевой (IP-адрес) версии IPv6. Типы Unicast IPv6-адресов и их формирование.
- 17. Сетевой (IP-адрес) версии IPv6. Понятие об unicast, anycast, multicast и broadcast. Multicast IPv6.
- 18. Сетевой (IP-адрес) версии IPv6. Процедура формирования адреса IPv6 по MAC-адресу. Разбиение IPv6-сети на подсети.
 - 19. Протокол ІСМР. Назначение. Формат пакета. Типы сообщений. ІСМР туннель.
- 20. Межсетевой пакетный тестер Ping. Целевое назначение и принцип работы. Форматы используемых программой ICMP-сообщений (ECHO, ECHO-Reply, ...).
- 21. Понятие о TTL. Использование механизма TTL для определения маршрута прохождения пакетов в сети. Программы для определения маршрута прохождения пакетов. Используемые при этом ICMP сообщения.
 - 22. Протокол IGMP. Назначение протокола и формат пакета. IGMP snooping.
- 23. Протокол ARP. Назначение протокола и формат пакета. Принцип работы протокола. Сетевые атаки, использующие протокол ARP.
 - 24. Протокол ICMPv6. Назначение протокола. Формат пакета. Типы сообщений.
- 25. Протокол ICMPv6. Neighbor Discovery Protocol (NDP). Назначение и типы сообщений. Router Solicitation и Router Advertisement.

- 26. Протокол ICMPv6. Neighbor Discovery Protocol (NDP). Процедура «разрешения» адресов. Neighbor Solicitation и Neighbor Advertisement. Процедура Neighbor Unreachability Detection.
- 27. Протокол TCP и его функции. Порт TCP. Формат заголовка и назначение полей. Алгоритм расчета контрольной суммы заголовка TCP.
- 28. Состояния сеанса ТСР. Процедуры установления и разрыва ТСР соединения. Порядок передачи данных по протоколу ТСР.
- 29. Протокол UDP и его функции. Порт UDP. Формат заголовка и назначение полей. Алгоритм расчета контрольной суммы заголовка UDP.
- 30. Протокол SCTP. Процедуры установления и разрыва SCTP соединения. Multihoming.
- 31. Протокол SSL. Назначение и структура протокола. SSL-сертификат. Пример лиалога SSL.
- 32. Протокол TLS. Назначение и структура протокола. Улучшения по сравнению с SSL. Процедуры установления и возобновления защищенного соединения. Мандаты сессий.
- 33. Протокол и служба DNS. Символьный (доменный адрес). Корневой домен и корневые серверы DNS. Типы доменов первого уровня. Зарезервированные доменные имена. Интернациональные доменные имена. Регистратор доменных имён. Альтернативные системы доменных имён.
- 34. Протокол и служба DNS. Порядок определения сетевого адреса по доменному имени. Рекурсивные и нерекурсивные DNS-запросы. Обратный DNS-запрос. Ресурсные записи DNS. Динамический DNS.
- 35. Схемы сетевых DNS-атак. Подмена DNS-ответа. Подмена вышестоящего DNS-сервера. Атака посредством отражённых DNS-запросов. Атаки типа DNS-флуд. Киберсквоттинг.
- 36. Протокол DHCP. Способы распределения IP-адресов. Формат кадра. Процедура получения адреса.
- 37. Протоколы удаленного управления. Протокол Telnet. Принцип и примеры работы протокола.
- 38. Протоколы удаленного управления. Протокол SSH. Принцип работы протокола. SSH-туннелирование.
- 39. Назначение и основные функции протокола FTP. Режимы установления связи для обмена файлами.
- 40. Методы безопасной передачи файлов по протоколу FTP. Протокол SFTP. Упрощенный протокол передачи файлов TFTP. Протокол прямого взаимодействия FTP серверов FXP.
- 41. Протокол синхронизации часов NTP. Принцип работы протокола. Понятие об иерархической системе источников времени.
- 42. Понятие об электронной почте. Используемая адресация. Формат сообщения электронной почты.
- 43. Структура электронной почта в сети Интернет. Основные структурные элементы. Порядок доставки электронного сообщения получателю.
- 44. Протокол SMTP. Назначение протокола. Команды клиента и ответы сервера. Механизм расширений ESMTP. Пример сеанса.
- 45. Протокол LMTP. Назначение протокола. Отличия от SMTP. Команды клиента и ответы сервера. Пример сеанса.
- 46. Протокол РОР3. Назначение протокола. Этапы сеанса протокола РОР3. Команды клиента и ответы сервера. Пример сеанса.
- 47. Протокол IMAP. Назначение протокола. Состояния сеанса протокола IMAP. Команды клиента и ответы сервера. Пример сеанса.
- 48. Протокол HTTP. Назначение протокола. Понятие об URI (Uniform Resource Identifier) и его формат. Взаимодействие между сервером и клиентом HTTP. Основные методы HTTP.

- 49. Протокол HTTP. Примеры диалогов HTTP. HTTP cookie и аутентификация в HTTP. Протокол HTTPS.
- 50. Вопросы информационной безопасности в Интернет. Понятие конфиденциальности. Аутентификация, авторизация, идентификация и способы их реализации. Целостность информации. Понятие о шифровании и криптографии.

С целью контроля и подготовки студентов к изучению новой темы вначале каждой практического занятия преподавателем проводится индивидуальный или фронтальный устный опрос по выполненным заданиям предыдущей темы.

Критерии оценки:

- правильность ответа по содержанию задания (учитывается количество и характер ошибок при ответе); полнота и глубина ответа (учитывается количество усвоенных фактов, понятий и т.п.);
 - сознательность ответа (учитывается понимание излагаемого материала);
- логика изложения материала (учитывается умение строить целостный, последовательный рассказ, грамотно пользоваться специальной терминологией);
- рациональность использованных приемов и способов решения поставленной учебной задачи (учитывается умение использовать наиболее прогрессивные и эффективные способы достижения цели);
- своевременность и эффективность использования наглядных пособий и технических средств при ответе (учитывается грамотно и с пользой применять наглядность и демонстрационный опыт при устном ответе);
 - использование дополнительного материала (обязательное условие);
- рациональность использования времени, отведенного на задание (не одобряется затянутость выполнения задания, устного ответа во времени, с учетом индивидуальных особенностей студентов).
 - 10 баллов ставится, если студент:
 - 1) полно и аргументированно отвечает по содержанию задания;
- 2) обнаруживает понимание материала, может обосновать свои суждения, применить знания на практике, привести необходимые примеры не только по учебнику, но и самостоятельно составленные;
 - 3) излагает материал последовательно и правильно.
- 6 баллов ставится, если студент дает ответ, удовлетворяющий тем же требованиям, что и для оценки «5», но допускает 1- 2 ошибки, которые сам же исправляет.
- 4 балла ставится, если студент обнаруживает знание и понимание основных положений данного задания, но:
- 1) излагает материал неполно и допускает неточности в определении понятий или формулировке правил;
- 2) не умеет достаточно глубоко и доказательно обосновать свои суждения и привести свои примеры;
 - 3) излагает материал непоследовательно и допускает ошибки.
- 0 баллов ставится, если студент обнаруживает незнание ответа на соответствующее задание, допускает ошибки в формулировке определений и правил, искажающие их смысл, беспорядочно и неуверенно излагает материал. Оценка «2» отмечает такие недостатки в подготовке студента, которые являются серьезным препятствием к успешному овладению последующим материалом.

Общее распределение баллов текущего контроля по видам учебных работ для студентов

Рейтинг-контроль 1	Устный опрос (2 вопроса)	До 5 баллов
Рейтинг-контроль 2	Устный опрос (2 вопроса)	До 5 баллов
Рейтинг-контроль 3	Устный опрос (2 вопроса)	До 5 баллов
Посещение занятий студентом	Отметка в журнале посещений	1 балл за каждое занятие
Дополнительные баллы (бонусы)		0
Выполнение семестрового плана самостоятельной работы	Защита лабораторных работ	До 5 баллов за каждую лабораторную работу

2. Промежуточная аттестация по дисциплине Перечень вопросов к экзамену / зачету / зачету с оценкой. Перечень практических задач / заданий к экзамену / зачету / зачету с оценкой (при наличии)

1. Интернет относится:
[] К первичной сети связи
[] К вторичной сети связи
[X] Не может быть классифицирован таким образом
2. Технология SDH относится:
[Х] К первичной сети связи
[] К вторичной сети связи
[] Не может быть классифицирована таким образом
3. Технология PDH относится:
[Х] К первичной сети связи
[] К вторичной сети связи
[] Не может быть классифицирована таким образом
4. Телефонная сеть общего пользования (PSTN) относится:
[] К первичной сети связи
[Х] К вторичной сети связи
[] Не может быть классифицирована таким образом
5. В режиме коммутации каналов сохранение очередности передаваемой информации
[Х] обеспечивается
[] не обеспечивается
6. В режиме коммутации пакетов сохранение очередности передаваемой информации
[] обеспечивается
[Х] не обеспечивается
7. Модуляция сигнала – это
[] способ изменения характеристик передающей среды в соответствии с передаваемой
информацией
[] способ изменения параметров исходного сигнала в соответствии с требованиями
канала передачи
[X] способ преобразования аналогового сигнала в цифровой сигнал
8. Импульсно-кодовая модуляция (РСМ)
[] определяет способ дискретизации аналогового сигнала
[X] определяет способ дискретизации и квантования аналогового сигнала
[] определяет способ дискретизации, квантования и кодирования аналогового сигнала
//Вопрос 8
Импульсно-кодовая модуляция (ИКМ или PCM — Pulse Code Modulation) используется
для оцифровки аналоговых сигналов перед их передачей. Практически все виды аналоговых

данных (видео, голос, музыка, данные телеметрии, виртуальные миры) допускают применение ИКМ-модуляции.

Чтобы получить на входе канала связи (передающий конец) ИКМ-модулированный сигнал из аналогового, амплитуда аналогового сигнала измеряется через равные промежутки времени. Количество оцифрованных значений в секунду (или скорость оцифровки) кратна максимальной частоте (Гц) в спектре аналогового сигнала. Мгновенное измеренное значение аналогового сигнала округляется до ближайшего уровня из нескольких заранее определенных значений. Этот процесс называется квантованием, а количество уровней всегда берется кратным степени двойки, например, 8, 16, 32 или 64. Номер уровня может быть соответственно представлен 3, 4, 5 или 6 битами. Таким образом, на выходе модулятора получается набор битов (0 или 1).

9. Миним	альная	частота	дескретизации	аналогового	сигнала	ДЛЯ	восстановления
сигнала при перед	аче чер	рез цифро	вые системы свя	изи определяет	гся		
[] минимал	іьной ч	астотой и	исходного сигнал	ıa			
[Х] максим	альной	частотой	й исходного сигн	ала			
[] минимал	тьной а	мплитудо	ой исходного сиг	нала			
[] максима	льной а	амплитуд	ой исходного си	гнала			
10. Линии	связи, в	в первую	очередь, делятся	на:			
[] Электри	ческие						
[Х] Направ	ляющи	e					
[] Оптичес	кие						
[Х] Линии	в атмос	ефере					
11. Направ	пующи	е линии с	вязи, это:				
[Х] Кабель	ные ли	нии					
[] Радиоре	лейные	линии					
[] Спутнин	совая сн	аек					
[Х] Воздуп	іные ли	инии					
12. Какой т	ип лин	ий связи	не относится к л	иниям в атмос	ефере:		
[] Радиоре	лейные	линии					
[] Спутнин	совая сн	аек					
[] Оптичес							
[Х] Воздуп		инии					
//Вопросы	9-12						

Различают два типа линий связи: в атмосфере (радиолинии) и направляющие (кабельно-проводные).

Достоинства направляющих линий связи состоят в обеспечении требуемого качества передачи сигналов, высокой скорости передачи, большой защищенности от влияния посторонних полей, заданной степени электромагнитной совместимости, в относительной простоте оконечных устройств. Недостатки этих линий определяются высокой стоимостью расходов на строительство и эксплуатацию.

По исполнению направляющие линии связи бывают кабельные, воздушные и волоконно-оптические.

Направляющие системы, естественно, могут привлечь внимание злоумышленников как источники получения конфиденциальной информации за счет подключения к ним. Подключение к линиям связи может быть осуществлено контактным (гальваническая связь) и бесконтактным (индукционная связь) путем.

Самым простым способом незаконного подключения является контактное подключение, например параллельное подключение телефонного аппарата, довольно широко распространенное в быту.

Бесконтактное подключение к линии связи осуществляется двумя путями: за счет электромагнитных наводок на параллельно проложенные провода; с помощью сосредоточенной индуктивности, охватывающей контролируемую линию. 13. Примером симметричного кабеля связи является:

[] коаксиальный кабель

	[Л] витах пара
	[] оптический кабель
	14. Примером несимметричного кабеля является:
	[Х] коаксиальный кабель
] витая пара
	[] оптический кабель
	//Вопросы13-14
	Основными параметрами передачи симметричной системы являются: волновое
	ивление; перекрестные наводки; сопротивление цепи постоянному
-	· · · · · · · · · · · · · · · · · · ·
	тухание;задержка; устойчивость к электромагнитным помехам;электромагнитное
излуче	
	В симметричных кабелях существуют два типа ЭМ волн – продольные и поперечные
	Способ передачи поперечными модами подробно описан в классической теории
-	чи сигналов. Проводники в паре передают идентичные сигналы в противофазе. В
	ном бесконечно длинном кабеле электромагнитные поля, вызванные движущимися
	ми в каждом проводнике, взаимно исключают друг друга, так что суммарное излучение
	равно нулю. Подобным образом взаимно исключаются наводки. Таким образом,
диффеј	ренциальные сигналы определяют характеристики передачи пары, но не влияют на
электр	омагнитную совместимость и наводки.
	15. Оптические волокна бывают следующих видов:
	[X] Многомодовое волокно со ступенчатым индексом
	[X] Многомодовое волокно со сглаженным индексом
	[X] Одномодовое волокно со ступенчатым индексом
	[] Одномодовое волокно со сглаженным индексом
	16. Одномодовый оптический кабель характеризуется тем, что:
	[] Отсутствует чёткая граница между средами оптического ядра и оболочки.
	[X] Свет распространяетс строго по одной траектории
	[] Диаметр ядра много больше длины волны лазера
	[] Наблюдается явление дисперсии, сглаживающее форму импульса
	17. Многомодовый оптический кабель характеризуется тем, что:
	[] Диаметр ядра сравним с длиной волны лазера
	[] Свет распространяетс строго по одной траектории
	[X] Свет распространяется по множеству траекторий
	[А] Свет распространяется по множеству грасктории 18. Упрощённо, характеристику «мода» оптического волокна можно понимать как:
	[] Это количество слоёв внутри оптической жилы.
	[] Это отношение диаметра оптического ядра к диаметру оболочки
	[X] Это количество возможных траекторий распространения света в волокне
	[] Это отношение коэффициента преломления ядра к коэффициенту преломления
оболоч	
	19. Оптические волокна НЕ бывают следующих видов:
	[] Многомодовое волокно со ступенчатым индексом
	[] Многомодовое волокно со сглаженным индексом
	[] Одномодовое волокно со ступенчатым индексом
	[Х] Одномодовое волокно со сглаженным индексом
	20. Укажите технологии построения первичной сети связи
	[] ISDN
	[X] PDH
	[] IN
	[] SS7
	[X] ATM
	[X] SDH
	21. Вторичная сеть связи
	[X] обеспечиваег прозрачную доставку информации между сетевыми узлами
	r]

[X] определяет способ подключения оборудования пользователя к сетевым узлам
[] обеспечивает передачу информации в цифровом виде
[Х] предоставляет услуги конечным пользователям
22. Основной цифровой канал DS0 – канал со скоростью
[] 32 кбит/с
[] 56 кбит/с
[Х] 64 кбит/с
[] 2048 кбит/с
23. Поток Е1 в межстанционном взаимодействии с реализацией межстанционной
сигнализации содержит
[Х] 30 голосовых каналов
[] 31 голосовой канал
[] 32 голосовых канала
24. Сколько потоков E4 может перенести синхронный транспортный модуль STM-1
[X] 1
$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$
[]4
[]5
25. Внеполосная сигнализация — сигнализация, при которой
[] сигнальная информация передается в канале, отдельном от канала, по которому
передается информация пользователя
[X] для передачи сигнальной информации используется диапазон частот, отличный от
диапазона частот пользовательского канала
[] сигнальная информация передается в пользовательском канале с использованием
одной или нескольких выделенных частот в том же частотном диапазоне
26. Многотональная сигнализация (DTMF) – это сигнализация
[Х] внутриполосная
[] ВСК (выделенный сигнальный канал)
[] ОКС (общий канал сигнализации)
27. Сигнализация SS7 — это сигнализация
[] внутриполосная
[] ВСК (выделенный сигнальный канал)
[Х] ОКС (общий канал сигнализации)
28. Стандарт сигнализации SS7 предусматривает реализацию на её базе сервисов:
[X] Ориентированных на установление соединения
[] Не ориентированных на установление соединения
[X] На базе коммутации каналов
[] На базе коммутации пакетов
29. Инфраструктуру сети сигнализации №7 используют сети
[Х] Телефонная Сеть Общего Пользования
[X] ISDN
[X] GSM
[X] IN
[] TCP/IP
[]SONET/SDH
30. Какой интерфейс доступа ISDN может быть реализован на витой паре?
[X] PRI u BRI
31. Дуплексная связь в сетях GSM реализуется методом
[Х] разнесения по частоте
[] разнесения по времени

32. В мобильных сетях GSM используется
[] только уплотнение по частоте
[Х?] только уплотнение по времени
[] уплотнение по частоте и по времени
Вопросы 33-34
По аналогии со спутниковыми каналами направление перелачи

По аналогии со спутниковыми каналами направление передачи от абонентского аппарата к базовой станции называется восходящим (Rise), а направление от базовой станции к абонентскому аппарату — нисходящим (Fall).

- 33. Нисходящий канал GSM это
- [X] частотный канал передачи информации от базовой станции к мобильной станции [] частотный канал передачи информации от мобильной станции к базовой станции

Методические материалы, характеризующие процедуры оценивания

На основе перечня вопросов к тестированию программным комплексом информационно-образовательного портала МИ ВлГУ формируются в автоматическом режиме тестовые задания для студентов: 8 вопросов из блока 1, 4 вопроса из блока 2 и 3 вопроса из блока 3. Программный комплекс формирует индивидуальные задания для каждого зарегистрированного в системе студента и устанавливает время прохождения тестирования. Результатом тестирования является балл, рассчитанный на основе количества правильных ответов. С учетом индивидуального семестрового рейтинга студента формируется итоговый балл по курсу.

Максимальная сумма баллов, набираемая студентом по дисциплине равна 100.

Оценка в баллах	Оценка по шкале	Обоснование	Уровень сформированности компетенций
Более 80	«Отлично»	Содержание курса освоено полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному	Высокий уровень
66-80	«Хорошо»	Содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками	Продвинутый уровень

50-65	«Удовлетворительно»	Содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки	Пороговый уровень
Менее 50	«Неудовлетворительно»	Содержание курса не освоено, необходимые практические навыки работы не сформированы, выполненные учебные задания содержат грубые ошибки	Компетенции не сформированы

1 n v 1
3. Задания в тестовой форме по дисциплине
Примеры заданий:
1. Восходящий канал GSM — это
[] частотный канал передачи информации от базовой станции к мобильной станции
[X] частотный канал передачи информации от мобильной станции к базовой станции
2. Текущее расположение мобильного абонента в сети GSM хранится:
[]BHLR
[X] B VLR
[] В MSSC домашнего оператора
[] В MSSC гостевого оператора
3. Сети ATM – сети с коммутацией
[Х] каналов — Лонг, ты не прав. Это не так.
[х] пакетов
[] ячеек
Asynchronous Transfer Mode — асинхронный способ передачи данных, сетевая
технология, основанная на передаче данных в виде ячеек (cell) или пакетов фиксированного
размера (53 байта), из которых 5 байтов используется под заголовок, а 48 — под рабочую
нагрузку.
4. Размер ячейки АТМ составляет
[] 32 байта
[] 48 байт
[Х] 53 байта
[] 56 байт
[] 64 байта
5. В сети АТМ гарантируется сохранение очередности прихода ячеек
[Х] да
[] нет
6. Сеть АТМ
[X] ориентирована на предварительное установление соединения
[] не ориентирована на предварительное установление соединения
7. Идентификаторы виртуального канала и виртуальног пути АТМ
[] задаются пользователем
[] согласуются двумя пользователями
[Х] выделяются сетевым устройством
8. В протоколе АТМ маршрутное поле ячейки:
[X] Согласуется между конечными точками, и не меняется на всём пути следования
ячейки.

[] Меняется от коммутатора к коммутатору
9. Компьютерные сети это сети:
[X] – с коммутацией пакетов
[] – с коммутацией каналов
10. В модели OSI выделяется
[] – 3 уровня
[] – 4 уровня
[] – 6 уровней
[X] – 7 уровней
11. В стеке ТСР/ІР выделяется
[] – 3 уровня
[X] – 4 уровня
[] – 6 уровней
[] – 7 уровней
12. Протокол Ethernet относится к
[XX] – физическому уровню
[X] – канальному уровню
[] – сетевому уровню
[] – транспортному уровню
13. Протокол ІР относится к
[] – физическому уровню
[] – канальному уровню
[Х] – сетевому уровню
[] – транспортному уровню
14. Протокол ТСР относится к
[] – физическому уровню
[] – канальному уровню
[] – сетевому уровню
[Х] – транспортному уровню

Полный перечень тестовых заданий с указанием правильных ответов, размещен в банке вопросов на информационно-образовательном портале института по ссылке https://www.mivlgu.ru/iop/question/edit.php?courseid=2465

Оценка рассчитывается как процент правильно выполненных тестовых заданий из их

общего числа.