Министерство науки и высшего образования Российской Федерации

Муромский институт (филиал)

федерального государственного бюджетного образовательного учреждения высшего образования

«Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИ ВлГУ)

Кафедра УКТС

«УТВЕРЖДАЮ»
Заместитель директора по УР
Д.Е. Андрианов
23.05.2023

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Сенсорика и физические основы получения информации

Направление подготовки 12.03.01 Приборостроение

Профиль подготовкиПрограммирование робототехнических систем

Семестр	Трудоем- кость, час./зач. ед.	Лек- ции, час.	Практи- ческие занятия, час.	Лабора- торные работы, час.	Консуль- тация, час.	Конт- роль, час.	Всего (контак- тная работа), час.	СРС,	Форма промежу- точного контроля (экз., зач., зач. с оц.)
3	180 / 5	16		24	3,6	0,35	43,95	109,4	Экз.(26,65)
Итого	180 / 5	16		24	3,6	0,35	43,95	109,4	26,65

1. Цель освоения дисциплины

Цель дисциплины: приобретение студентами знаний в области физических основ получения информации, являющихся базой при подготовке квалификационных специалистов в области приборостроения.

Основными задачами изучения дисциплины является освоение: основ теории измерений, теории волновых процессов; методов получения информации на основе физических явлений.

2. Место дисциплины в структуре ОПОП ВО

Дисциплина «Сенсорика и физические основы получения информации» базируется на знаниях, полученных студентами по дисциплинам: «Математика», «Физика», и других. На дисциплине «Сенсорика и физические основы получения информации» базируется изучение таких дисциплин как «Основы теории излучения», «Методы технической диагностики», «Физические методы контроля» и другие.

3. Планируемые результаты обучения по дисциплине

Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения ОПОП (компетенциями и индикаторами достижения компетенций)

	T		
Формируемые	Планируемые результать	ы обучения по дисциплине, в	
компетенции (код,	соответствии с индикатор	ом достижения компетенции	Наименование оценочного
содержание	Индикатор достижения	Результаты обучения по	средства
компетенции)	компетенции	дисциплине	
ОПК-1 Способен	ОПК-1.2 Объясняет	Знать физические законы и	отчет, тест
применять	смысл происходящих	модели окружающего мира,	
естественнонаучные	явлений окружающего	используемые для получения	
и общеинженерные	мира,применяет	измерительной и	
знания, методы	физические законы и	управляющей информации	
математического	модели, необходимые для	(ОПК-1.2)	
анализа и	решения задач в области	Уметь определять	
моделирования в	профессиональной	необходимые	
инженерной	деятельности	закономерности проявления	
деятельности,		физических эффектов при	
связанной с		измерениях (ОПК-1.2)	
проектированием и		Владеть навыками	
конструированием,		применения современных	
технологиями		методик для проведения	
производства		измерений (ОПК-1.2)	
приборов и			
комплексов			
широкого			
назначения			
ОПК-3 Способен	ОПК-3.1 Выбирает и	Знать особенности измерения	отчет, тест
проводить	использует	явлений и процессов (ОПК-	
экспериментальные	соответствующие	3.1)	
исследования и	ресурсы, современные	Уметь определять	
измерения,	методики и оборудование	необходимые измерительные	
обрабатывать и	для проведения	преобразователи при	
представлять	экспериментальных	измерениях (ОПК-3.1)	
полученные данные	исследований и	Владеть навыками	
с учетом специфики	измерений	обосновывать выбор методов	
методов и средств		и средств измерения для	
технических		решения конкретных задач	
измерений в		(ОПК-3.1)	
приборостроении			

4. Структура и содержание дисциплины

Общая трудоемкость дисциплины составляет 5 зачетных единиц, 180 часов.

4.1. Форма обучения: очная

Уровень базового образования: среднее общее. Срок обучения 4г.

4.1.1. Структура дисциплины

№ п\п	Раздел (тема) дисциплины	стр	обу	Ко	Форма текущего контроля успеваемости (по неделям						
		Семестр	Лекции	Практические занятия	Лабораторные работы	Контрольные работы	KII / KP	Консультация	Контроль	Самостоятельная работа	семестра), форма промежуточной аттестации(по семестрам)
1	Информационные поля. Виды информации.	3	8							20	отчет, тестирование
2	Физические явления и эффекты, используемые для получения измерительной информации. Измерительные преобразователи. Виды преобразователей. Получение и обработка информации.	3	8		24					89,4	отчет, тестирование
Всего	Всего за семестр		16		24			3,6	0,35	109,4	Экз.(26,65)
Итог	o	180	16		24			3,6	0,35	109,4	26,65

4.1.2. Содержание дисциплины 4.1.2.1. Перечень лекций

Семестр 3

Раздел 1. Информационные поля. Виды информации.

Лекция 1.

Физическая величина и её измерение. Единицы измерений физических величин. Международная система единиц (СИ). Результат измерений как источник информации. Погрешности измерений. Средства измерений. Условия измерений. Эталоны. Аттестация и поверка. Единство измерений. Информационные поля. Виды информации. Информационный обмен, носители и сигналы (2 часа).

Лекция 2.

Основные исходные уравнения акустических полей. Уравнение состояния. Уравнение энергии. Уравнение непрерывности — уравнение сохранения массы. Уравнение Эйлера. Энергия упругих волн. Поток мощности. Интенсивность волн. Плотность звуковой энергии. Волновое уравнение. Генерация акустических полей и их структура. Шкалы звуковых и ультразвуковых волн (2 часа).

Лекция 3.

Волновые процессы в реальных средах. Диссипация энергии. Отражение звука от граничных поверхностей. Пьезоэффект. Виды граничных условий. Явление интерференции, дифракции, дисперсии, поляризации, рассеяния и поглощения. Эффект Доплера в акустике. Распространение звука в неоднородных средах. Нелинейные акустические эффекты (2 часа). **Лекция 4.**

Характеристики вещества и поля. Основные уравнения электромагнитных полей. Уравнения Максвелла. Ток смещения. Граничные условия. Аналогия между акустическими и электромагнитными явлениями. Корпускулярно-волновой дуализм. Излучение и приём электромагнитных волн, волновое распространение. Влияние параметров среды на рассеяние, поляризацию, поглощение, и дисперсию электромагнитных волн (2 часа). Раздел 2. Физические явления и эффекты, используемые для получения измерительной информации. Измерительные преобразователи. Виды преобразователей. Получение и обработка информации.

Лекция 5.

Намагничивание вещества. Спин. Молекулярные токи, возникновение полей рассеивания. Ферромагнетизм. Домены. Эффект Баркгаузена. Коэрцитивная сила. Скинэффект (2 часа).

Лекция 6.

Источники тепловых полей и распределения температуры. Термо-Э.Д.С. Основные эффекты и законы теплопередачи. Комбинированные эффекты: электромагнито-акустические, термооптические, термоупругие и др (2 часа).

Лекция 7.

Использование интерференции когерентных волновых полей для измерения скорости распространения волн, геометрических размеров микронеровностей изделий и др. Оптическая и акустическая голография. Принцип получения голограммы. Дифракция акустических и электромагнитных волн на препятствиях. Измерения геометрических размеров объектов. Области применения волн дифракции. Виды дифракции, их применение для обнаружения дефектов. Головные волны. Волны соскальзывания. Волна Релея. Дифракция света на ультразвуке. Акустический фонон. Применение акустооптической дифракции. Дифракция рентгеновских лучей и использование этого явления для рентгенографического анализа структуры вещества. Поглощение. Акустическая релаксация, время релаксации. Использование дисперсии света и скорости ультразвука для контроля физико-механических параметров материала. Эхо-импульсные и трансмиссионные методы визуализации и измерений (2 часа).

Лекция 8.

Выявление и оценка размеров и вида дефектов, контроль и измерение физикомеханических свойств и марок материалов на основе вихретоковых явлений. Принципы преобразования. Основные термины и определения. Структурная схема универсального первичного преобразователя. Принцип взаимности. Типовые звенья в статическом и динамическом режимах. Амплитудные и фазовые характеристики. Чувствительность. Пьезоэлектрические преобразователи. Чувствительность. Рабочие частоты. Используемые материалы. Схема преобразователя (2 часа).

4.1.2.2. Перечень практических занятий

Не планируется.

4.1.2.3. Перечень лабораторных работ

Семестр 3

Раздел 2. Физические явления и эффекты, используемые для получения измерительной информации. Измерительные преобразователи. Виды преобразователей. Получение и обработка информации.

Лабораторная 1.

Измерение твёрдости металла неразрушающими методами (4 часа).

Лабораторная 2.

Методы измерения толщины покрытия (4 часа).

Лабораторная 3.

Ультразвуковой метод измерения геометрических размеров изделий (4 часа).

Лабораторная 4.

Исследование скорости распространения ультразвуковых волн в различных телах (4 часа).

Лабораторная 5.

Импульсный метод определения затухания в твердых телах (4 часа).

Лабораторная 6.

Исследование качества термообработки ферромагнитных материалов методом измерения коэрцитивной силы (4 часа).

4.1.2.4. Перечень тем и учебно-методическое обеспечение самостоятельной работы

Перечень тем, вынесенных на самостоятельное изучение:

- 1. Распространение звука в неоднородных средах.
- 2. Вывод размерностей физических величин.
- 3. Поле прямого преобразователя.
- 4. Нормальные волны, волны Релея, волны Лэмба.
- 5. Виды дифракции, дифрактометр.
- 6. Акустическая голография.
- 7. Расходомер на эффекте Доплера. Эффект Холла.
- 8. Магнитострикция. Связь между механическими свойствами и магнитными характеристиками металлов.
- 9. Скорость распространения электромагнитных волн. Шкала электромагнитных волн. ЭМА преобразователи.
- 10. Связь между напряжённым состоянием ферромагнетика и шумами Баркгаузена.
- 11. Эффект Кайзера.
- 12. Вихревые токи и их измерение. Преобразователи вихревых токов, классификация датчиков. Контроль изделий большой толщины из немагнитных материалов. Определение физико-механических свойств материала.
- 13. Пьезоэлектрические преобразователи. Схемы преобразователей.
- 14. Принцип ксерографии.
- 15. Люминесценция.
- 16. Использование интерференции когерентных волновых полей. Интерферометр.
- 17. Виды дифракции света на ультразвуке.
- 18. Годографы.
- 19. Особенности волновых явлений СВЧ-диапазона. Оптическое излучение и особенности его восприятия человеком, фотометрия. Электро- и магнитостатика. Уравнения Максвелла для статики. Скин-эффект.
- 20. Прохождение частиц высоких энергий через вещество. Виды и классификация ионизирующих излучений. Капиллярные явления и диффузия. Смачивание. Сорбционные явления.
- 21. Принципы преобразования. Основные термины и определения. Структурная схема универсального первичного преобразователя. Принцип взаимности. Типовые звенья в статическом и динамическом режимах. Амплитудные и фазовые характеристики.

22. Чувствительность. Резисторные, ёмкостные, полупроводниковые, феррозондовые преобразователи. Датчик Холла.

Для самостоятельной работы используются методические указания по освоению дисциплины и издания из списка приведенной ниже основной и дополнительной литературы.

- **4.1.2.5. Перечень тем контрольных работ, рефератов, ТР, РГР, РПР** Не планируется.
- **4.1.2.6.** Примерный перечень тем курсовых работ (проектов) Не планируется.

4.2 Форма обучения: заочная Уровень базового образования: среднее общее. Срок обучения 5л.

Семестр	Трудоем- кость, час./ зач. ед.	Лек- ции, час.	Практи- ческие занятия, час.	Лабора- торные работы, час.	Консуль- тация, час.	Конт- роль,час.	Всего (контак- тная работа), час.	СРС, час.	Форма промежуточного контроля (экз., зач., зач. с оц.)
5	180 / 5	4		12	2	0,6	18,6	152,75	Экз.(8,65)
Итого	180 / 5	4		12	2	0,6	18,6	152,75	8,65

4.2.1. Структура дисциплины

№ п\п	Раздел (тема) дисциплины	Семестр	пе	Контактная работа обучающихся с педагогическим работником							Форма текущего контроля успеваемости (по неделям
			Лекции	Практические занятия	Лабораторные работы	Контрольные работы	KII / KP	Консультация	Контроль	Самостоятельная работа	неделям семестра), форма промежуточной аттестации(по семестрам)
1	Информационные поля. Виды информации.	5	2							20	отчет, тестирование
2	Физические явления и эффекты, используемые для получения измерительной информации. Измерительные преобразователи. Виды преобразователей. Получение и обработка информации.	5	2		12					132,75	отчет, тестирование, контрольная работа
	го за семестр	180	4		12	+		2	0,6	152,75	Экз.(8,65)
Ито	го	180	4		12			2	0,6	152,75	8,65

4.2.2. Содержание дисциплины 4.2.2.1. Перечень лекций

Семестр 5

Раздел 1. Информационные поля. Виды информации.

Лекция 1.

Информационные поля. Виды информации (2 часа).

Раздел 2. Физические явления и эффекты, используемые для получения измерительной информации. Измерительные преобразователи. Виды преобразователей. Получение и обработка информации.

Лекция 2.

Физические явления и эффекты, используемые для получения измерительной информации. Измерительные преобразователи. Виды преобразователей. Получение и обработка информации (2 часа).

4.2.2.2. Перечень практических занятий

Не планируется.

4.2.2.3. Перечень лабораторных работ

Семестр 5

Раздел 1. Физические явления и эффекты, используемые для получения измерительной информации. Измерительные преобразователи. Виды преобразователей. Получение и обработка информации.

Лабораторная 1.

Измерение твёрдости металла неразрушающими методами (4 часа).

Лабораторная 2.

Методы измерения толщины покрытия (4 часа).

Лабораторная 3.

Ультразвуковой метод измерения геометрических размеров изделий (4 часа).

4.2.2.4. Перечень тем и учебно-методическое обеспечение самостоятельной работы

Перечень тем, вынесенных на самостоятельное изучение:

- 1. Распространение звука в неоднородных средах.
- 2. Вывод размерностей физических величин.
- 3. Поле прямого преобразователя.
- 4. Нормальные воны, волны Релея, волны Лэмба.
- 5. Виды дифракции, дифрактометр.
- 6. Акустическая голография.
- 7. Расходомер на эффекте Доплера. Эффект Холла.
- 8. Магнитострикция. Связь между механическими свойствами и магнитными характеристиками металлов.
- 9. Скорость распространения электромагнитных волн. Шкала электромагнитных волн. ЭМА преобразователи.
 - 10. Связь между напряжённым состоянием ферромагнетика и шумами Баркгаузена.
 - 11. Эффект Кайзера.
- 12. Вихревые токи и их измерение. Преобразователи вихревых токов, классификация датчиков. Контроль изделий большой толщины из немагнитных материалов. Определение физико-механических свойств материала.
 - 13. Пьезоэлектрические преобразователи. Схемы преобразователей.
 - 14. Принцип ксерографии.
 - 15. Люминесценция.
 - 16. Использование интерференции когерентных волновых полей. Интерферометр.
 - 17. Виды дифракции света на ультразвуке.

- 18. Годографы.
- 19. Особенности волновых явлений СВЧ-диапазона. Оптическое излучение и особенности его восприятия человеком, фотометрия. Электро- и магнитостатика. Уравнения Максвелла для статики. Скин-эффект.
- 20. Прохождение частиц высоких энергий через вещество. Виды и классификация ионизирующих излучений. Капиллярные явления и диффузия. Смачивание. Сорбционные явления.
- 21. Принципы преобразования. Основные термины и определения. Структурная схема универсального первичного преобразователя. Принцип взаимности. Типовые звенья в статическом и динамическом режимах. Амплитудные и фазовые характеристики.
- 22. Чувствительность. Резисторные, ёмкостные, полупроводниковые, феррозондовые преобразователи. Датчик Холла.

Для самостоятельной работы используются методические указания по освоению дисциплины и издания из списка приведенной ниже основной и дополнительной литературы.

4.2.2.5. Перечень тем контрольных работ, рефератов, ТР, РГР, РПР

1. Практическое применение основ получения информации.

4.2.2.6. Примерный перечень тем курсовых работ (проектов) Не планируется.

5. Образовательные технологии

В процессе изучения дисциплины применяется контактная технология преподавания (за исключением самостоятельно изучаемых студентами вопросов). При проведении занятий применяется имитационный или симуляционный подход, когда преподавателем разбирается на конкретном примере проблемная ситуация, все шаги решения задачи студентам демонстрируются при помощи мультимедийной техники. Затем студенты самостоятельно решают аналогичные задания. Так же при проведении занятий применяется частично-поисковый метод: студенты осуществляют поиск решения поставленной проблемы (задачи). При этом, постановочные задачи опираются на уже имеющиеся у студентов знания и умения, полученные в предшествующих темах.

6. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины. Фонды оценочных материалов (средств) приведены в приложении.

7. Учебно-методическое и информационное обеспечение дисциплины.

7.1. Основная учебно-методическая литература по дисциплине

- 1. Рогачев, Е. А. Физические основы современных методов исследования материалов : учебное пособие / Е. А. Рогачев. Омск : Омский государственный технический университет, 2021. 88 с. https://www.iprbookshop.ru/124891.html
- 2. Земляков В.В. Физические основы получения информации [Электронный ресурс]: учебное пособие/ Земляков В.В., Панич А.Е.— Электрон. текстовые данные.— Ростов-на-Дону, Таганрог: Издательство Южного федерального университета, 2019.— 124 с. http://www.iprbookshop.ru/95826.html

7.2. Дополнительная учебно-методическая литература по дисциплине

- 1. Седых, Д. А. Методы исследования, контроля и испытания материалов : учебное пособие / Д. А. Седых, А. А. Крутько, А. Р. Путинцева. Омск : Омский государственный технический университет, 2021. 116 с. https://www.iprbookshop.ru/124839.html
- 2. Бахтин, А. В. Технологические измерения, приборы и информационно-измерительные системы : учебное пособие / А. В. Бахтин, И. В. Ремизова. Санкт-Петербург

: Санкт-Петербургский государственный университет промышленных технологий и дизайна, 2020. - 67 c. - https://www.iprbookshop.ru/118418.html

7.3. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

В образовательном процессе используются информационные технологии, реализованные на основе информационно-образовательного портала института (www.mivlgu.ru/iop), и инфокоммуникационной сети института:

- предоставление учебно-методических материалов в электронном виде;
- взаимодействие участников образовательного процесса через локальную сеть института и Интернет;
- предоставление сведений о результатах учебной деятельности в электронном личном кабинете обучающегося.

Информационные справочные системы:

Информационно-образовательный портал МИВлГУ http://www.mivlgu.ru/iop/

Радиотехника и электроника для разработчиков и радиолюбителей http://radiotract.ru/link_sprav.html

Радиотехнические системы http://rateli.ru/

Программы по электронике http://creatiff.realax.ru/?cat=programs&page=progrm1

Портал для радиолюбителей http://www.radioman-portal.ru/shems.shtml

Национальный Открытый Университет "Интуит" http://www.intuit.ru/

База данных технической документации на зарубежные микросхемы http://www.alldatasheet.com

Информационно-справочная система по радиокомпонентам http://www.radiolibrary.ru/

Pоспатент - http://fips.ru

Программное обеспечение:

Open Office (Бесплатное ПО)

7.4. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

iprbookshop.ru mivlgu.ru radiotract.ru rateli.ru creatiff.realax.ru radioman-portal.ru intuit.ru alldatasheet.com radiolibrary.ru fips.ru

mivlgu.ru/iop

8. Материально-техническое обеспечение дисциплины

Лаборатория СВЧ устройств и дистанционных методов получения информации Блок измерительный П5-34 — 1 шт.; Вольтметр В7-28 — 1 шт.; Генератор сигналов ВЧ Г4-83 — 1 шт.; Генератор сигналов специальной формы Г6-27 — 1 шт.; Источник питания Б5-7 — 1 шт.; Генератор импульсный Г5-63 — 1 шт.; Генератор сигналов высокочастотный Г4-83 — 1 шт.; Осциллограф С1-64 — 1 шт.; Генератор качающейся частоты ГК4-44 — 1 шт.; Частотомер резонансный Ч2-33 — 1 шт.; Макет самолетной РЛС — 1 шт.; Компьютер Kraftway Credo КС 36 — 1 шт.; Проектор Проектор мультимедийный НD; Экран переносной на треноге Projecta ProView (160*160) Matte White S.

9. Методические указания по освоению дисциплины

Для успешного освоения теоретического материала обучающийся: знакомится со списком рекомендуемой основной и дополнительной литературы; уточняет у преподавателя, каким дополнительным пособиям следует отдать предпочтение; ведет конспект лекций и прорабатывает лекционный материал, пользуясь как конспектом, так и учебными пособиями.

До выполнения лабораторных работ обучающийся изучает соответствующий раздел теории. Перед занятием студент знакомится с описанием заданий для выполнения работы, внимательно изучает содержание и порядок проведения лабораторной работы. Лабораторныя работы проводятся в компьютерном классе. Обучающиеся выполняют индивидуальную задачу компьютерного моделирования в соответствии с заданием на лабораторную работу. Полученные результаты исследований сводятся в отчет и защищаются по традиционной методике в классе на следующем лабораторном занятии. Необходимый теоретический материал, индивидуальное задание, шаги выполнения лабораторной работы и требование к отчету приведены в методических указаниях, размещенных на информационнообразовательном портале института.

Самостоятельная работа оказывает важное влияние на формирование личности будущего специалиста, она планируется обучающимся самостоятельно. Каждый обучающийся самостоятельно определяет режим своей работы и меру труда, затрачиваемого на овладение учебным содержанием дисциплины. Он выполняет внеаудиторную работу и изучение разделов, выносимых на самостоятельную работу, по личному индивидуальному плану, в зависимости от его подготовки, времени и других условий.

Форма заключительного контроля при промежуточной аттестации — экзамен. Для проведения промежуточной аттестации по дисциплине разработаны фонд оценочных средств и балльно-рейтинговая система оценки учебной деятельности студентов. Оценка по дисциплине выставляется в информационной системе и носит интегрированный характер, учитывающий результаты оценивания участия студентов в аудиторных занятиях, качества и своевременности выполнения заданий в ходе изучения дисциплины и промежуточной аттестации.

Программа составлена в соответствии с требованиями ФГОС ВО по направлению 12.03.01 Приборостроение и профилю подготовки Программирование робототехнических
систем
Рабочую программу составил д.т.н., профессор кафедры УКТС
Ростокин И.Н.
Программа рассмотрена и одобрена на заседании кафедры УКТС
протокол № 37 от 18.05.2023 года.
Заведующий кафедрой УКТС Дорофеев Н.В.
(Подпись)
Рабочая программа рассмотрена и одобрена на заседании учебно-методической комиссии факультета
протокол № 9 от 19.05.2023 года.
Председатель комиссии ФИТР Рыжкова М.Н.
(Подпись) (Ф.И.О.)
(ПОДПИСЬ) $(\Psi.П.О.)$

Фонд оценочных материалов (средств) по дисциплине

Сенсорика и физические основы получения информации

1. Оценочные материалы для проведения текущего контроля успеваемости по дисциплине

Вопросы для тестирования размещены в банке вопросов https://www.mivlgu.ru/iop/question/edit.php?courseid=3796

Общее распределение баллов текущего контроля по видам учебных работ для студентов

Рейтинг-контроль 1	2 лабораторные работы	20
Рейтинг-контроль 2	2 лабораторные работы	20
Рейтинг-контроль 3	2 лабораторные работы, тестирование	20
Посещение занятий студентом		0
Дополнительные баллы (бонусы)		0
Выполнение семестрового плана самостоятельной работы		0

2. Промежуточная аттестация по дисциплине

Перечень вопросов к экзамену / зачету / зачету с оценкой. Перечень практических задач / заданий к экзамену / зачету / зачету с оценкой (при наличии)

Вопросы для тестирования размещены в банке вопросов https://www.mivlgu.ru/iop/question/edit.php?courseid=3796

Методические материалы, характеризующие процедуры оценивания

Для оценивания сформированных у студента знаний, умений и навыков имеются типовые задания. Все типовые задания разбиты на 3 блока: блок 1 - для оценивания знаний, блок 2 - для оценивания умений, блок 3 - для оценивания навыков (владений). Каждый блок включает вопросы своего уровня сложности и оценивается определенным количеством баллов. Максимальный балл, который может набрать студент при правильном ответе на все вопросы, равняется 40.

Тест для оценки знаний, умений и навыков студента состоит из 15 вопросов и формируется на основе типовых заданий программным комплексом информационнообразовательного портала МИ ВлГУ в автоматическом режиме. Программный комплекс формирует индивидуальные задания для каждого зарегистрированного в системе студента и устанавливает время прохождения тестирования. Результатом тестирования является процент правильных ответов, с учетом индивидуального семестрового рейтинга студента формируется экзаменационная оценка.

Максимальная сумма баллов, набираемая студентом по дисциплине равна 100.

Оценка	Оценка по шкале	Обоснование	Уровень
В			сформированности
баллах			компетенций
Более	«Отлично»	Содержание курса освоено	Высокий уровень

80		полностью, без пробелов, необходимые практические навыки работы с освоенным материалом сформированы, все предусмотренные программой обучения учебные задания выполнены, качество их выполнения оценено числом баллов, близким к максимальному	
66-80	«Хорошо»	Содержание курса освоено полностью, без пробелов, некоторые практические навыки работы с освоенным материалом сформированы недостаточно, все предусмотренные программой обучения учебные задания выполнены, качество выполнения ни одного из них не оценено минимальным числом баллов, некоторые виды заданий выполнены с ошибками	Продвинутый уровень
50-65	«Удовлетворительно»	Содержание курса освоено частично, но пробелы не носят существенного характера, необходимые практические навыки работы с освоенным материалом в основном сформированы, большинство предусмотренных программой обучения учебных заданий выполнено, некоторые из выполненных заданий, возможно, содержат ошибки	Пороговый уровень
Менее 50	«Неудовлетворительно»	Содержание курса не освоено, необходимые практические навыки работы не сформированы, выполненные учебные задания содержат грубые ошибки	Компетенции не сформированы

3. Задания в тестовой форме по дисциплине

Примеры заданий:

Сопоставьте название метода измерения и его характеристику

- -Метод непосредственной оценки
- о значении измеряемой величины судят по показанию прибора, отградуированного в единицах измеряемой величины
 - -Метод сравнения с мерой
 - -измеряемая величина сравнивается с величиной воспроизводимой меры
 - -Метод акустической эмиссии
 - -пассивный метод

Скорость звука в идеальных газах с увеличением температуры _____. Выберите один ответ:

- -увеличивается
- -не изменяется
- -уменьшается

-нет правильного ответа

Бесконтактным	способом	получения,	излучения	И	приема	акустических	волн
характеризуются	преобраз	вователи					

Полный перечень тестовых заданий с указанием правильных ответов, размещен в банке вопросов на информационно-образовательном портале института по ссылке https://www.mivlgu.ru/iop/question/edit.php?courseid=3796

Оценка рассчитывается как процент правильно выполненных тестовых заданий из их общего числа.